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SOME ASPECTS OF CLASSICAL KNOT THEORY *

by
C. McA. Gordon

0. Introduction

Man's fascination with knots has a long history, but they do not appear to
have been considered from the mathematical point of view until the 19th century.
Even then, the unavailability of appropriate methods meant that initial progress
was, in a sense, slow, and at the beginning of the present century rigorous proofs
had still not appeared. The arrival of algebraic-topological methods soon changed
this, howe?er, and the subject is now a highly-developed one, drawing on both al-
gebra and geometry, and providing an opportunity for interplay between them.

The aim of the present article is to survey some topics in this theory of
knotted circles in the 3—s§here. Completeness has not been attempted, nor is it
necessarily the case that the topics chosen for discussion ;nd the results men-
tloned are those that the'author considers the most important: non-mathematical
factors also contributed to the form of the article.

For additional information on knot theory we would recommend the survey ar-
ticle of Fox [43], and the books of Neuwirth [112] and Rolfsen [128]. Reidemeis-
ter's book [125] is also still of interest. As far as problems are concerned, see
(44], [112], [113], [75], as well as the present volume. Again, we have by mno
means tried to include a complete bibliography, although we hope that credit for
ideas has been given where it is due. For a more extensive list of early refer-
ences, see [26].

In the absence of evidence to the contrary, we shall be working in the smquh
category (probably), and homology will be with integer coefficients. e

I should like to thank Rick Litherland for helpful discussions and suggestions

concerning this article, and also the editor; Jean-Claude Hausmann, for his

patience.
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1. Enumeration

It seems that the first mathematician to consider knots was Gauss, whose
interest in them began at an early age [31, p.222]. Unfortunately, he himself
wrote little on the subject [49, V, p. 605; VIII, pp. 271-286], despite the fact
that he regarded the analysis of knotting and linking as one of the central tasks
of the 'geometria situs' foreseen by Leibniz (49, V, p. 605]. His student Listing,
however, devoted a considerable part of his monograph [88] to knots, and in par-
ticular made some attempt to describe a notation for knot diagrams.

A more successful attack, inspired by Lord Kelvin's theory of vortex atoms,
was launched in the 1860'5(1) by the Scottish physicist Tait. His first papers
on knots were published in 1876-77 (see [145]). Later, with the help of the
'polyhedral diagrams' of the Reverend Kirkman, Tait and Little (the latter had
done some earlier work [90]) made considerable progress on the enumeration
('census') problem, so that by 1900 there were in existence tables of prime knots
up to 10 crossings and alternating prime knots of 11 crossings [91], [92], [93],
(145].

Essentially nothing was done by way of extending these tables until about
1960, when Conway invented a new and more efficient notation which enabled him
to list all (prime) knots up to 1l crossings and all links up to 10 crossings
[19], (revealing, in particular, some omissions in the 19th century tables).

There are two main aspects of this kind of enumeration: completeness and
non-redundancy. One wants to know (i.e. prove) that one has listed all knots up
to a given crossing number, and also that the knots listed are distinct. The
former belongs to combinatorial mathematics, and although a proof of completeness
throughout the range of the existing tables would no doubt be long and tedious,
it is not hard to envisage how such a proof would go. Indeed, implicit in the
compilation of the tables is the possession of at least the outline of such a
proof. Although some omissions in Conway's tables have recently been brought to

(1)see Maxwell's letter of 1867 quoted in [77, p. 106]



crossing number | 3 4 5 6 7 8 9 10

number of prime knots

1 1 2 3 7 21 49 165

(See [3] for pictures of knots up to 9 crossings, and [115] for those with 10
crossings.) There are 550 ll-crossing knots mow known [117], and although there
is a éood chance that these might be all, the task of proving them distinct is a
formidable one that has not yet been completed. Indeed, as intimated in [117]
(which contains some partial results), invariants more delicafe than those which

suffice up to 10 crossings are now required.

2. The Group

The knot problem becomes discretized when looked at from the point of view
of combinatorial topology. It is noted in [30], for example, that it can be
fofmulated entirely in terms of arithmetic. However, this kind of 'reduction’
seems to be of no practical value, nor does it seem to have any theoretical con-

sequences (for decidability, for example). There are also many natural numerical
nere A

invariants of a knot which may be defined, such as the minimal number of crossing

points in any projection of the knot, the minimal number of crossing-point changes

required to unknot the knet (the 'gordian number' [160]), the maximal euler
g

éharnctcristic of a spanning surface (oricntable or not), and so on (sce [125,

pp. 16-17]). But these tend to be hard to compute.

The first successful algebraic invariant to be attached to a knot was the
fundamental group of its complement, (the group of the knot), and presentations
of certain knot groups appear fairly early in the literature (see 1146]). General
methods for writing down a presentation of the knot group from a knot projection
were given by Wirtinger (unpublished (?) ;see [125, I1I, §9])and Dehn [27]. Actually
it was soon recognized [28] that a knot contains (at least a priori) more infor-
mation than just its group, as we now explain. Let K < S3 be our given
(smooth) knot, and let X be its exterior,lthat 1s, the closure of the comple-
ment of a tubular neighbourhood N of K. (The exterior and the complement are

equivalent invariants: clearly the exterior determines the complement, and the



Despite such examples, the group is still a powerful invariant. It was shown
by Dehn [27], for example, (modulo his 'lemma', which was introduced specifically
fér this purpose) that the only knot with group :Z‘ is the unknot. This finally
became a theorem in 1956 when Dehn's lemma was established by Papakyriakopoulos
[114]. At the same time, Papakyriakopoulos also proved the first version of the
sphere theorem, and as a consequence, the asphericity of knots, that is, the fact
that the complement of a knot is a K(m,1). It follows that the group of a knot
determines the homotopy type of its complement.

The role of the peripheral structure was finally completely clarified by
Waldhausen's work [155] on irreducible, sufficiently large, 3-manifold§ (this
work in turn being based on earlier ideas of Haken). Specializing to the case
that concerns us here, Waldhausen showed that if .Kl and K2 are knots with ex-
teriors X XZ’ then any homotopy equivalence of pairs (xl,axl) > (xz,axz) is

homotopic to a homeomorphism. This implies, for example, that knots (under the

strongest form of equivalence, which takes both the ambient orientation and that
-__'_'____.—l—___ —

of the knot into account), are classified by (isomorphism classes of) their asso-

clated triples (nK,A\,11). We may remark that it is a purely algebraic exercise

to pass from such a classifying triple to a classifying group [20]. Other, more
complicated, but more geometric, ways of nailing down the peripheral structure
within a single group are given in [140], [163] and [37]. (The classifying groups
obtained there are, respectively, the free product of the groups of two cables

about K.#KO (where K _ 1is, say, the figure eight knot), the group of the double

0
of K, and the group of the (p,q)-cable of K where |p] >3 and |q] > 2.)
The situation may to some extent be summarized by the following diagram,

where, for simplicity, ~ now denotes the weak form of knot equivalence which

disregards orientations, (and Pi denotes the peripheral subgroup nl(axi)).

"y

1 9 Xy x2 = (xl,axl) e (xz,axz) = x.l =X,

(0 8

(KA u) 5 (A L il);(nxp) =
1’1o M 272 Mg 1’1

il <

K

(RKZ,PZ) = nKl 2



even a proof of a negative answer to either (1) or (2)), scems beyond the scope of
existing techniques. Question (3) may be easier. (Indeed it follows from the
finiteness theorem of Thurston mentioned above that if K 1is a hyperbolic knot,
and some non-trivial resewing of a tubular neighbourhood of K gives 83, then
the new knot is at least not isotopic to K. For, if the resewing in question is
the one which 'kills' ukn, say, n#0, then the new knot's being isotopic to

K would imply the existence of a self-homeomorphism h of the exterior X of K
taking A > Xe, Ty pE%Fn, where € =% 1. Since h® would then take

B (A )+ » the resewing corresponding to ukrn would yield SB, for all
r, contradicting the finiteness statement.)

Returning to our diagram of implications, the example of the reef and granny

shows that the horizontal implications on the right are not reversible. Omn the

e

other hand, Johannson [66], [67] and Feustel [36] have shown that if nK nKz,

1

= X,. Now the only knots whose

and X contains no essential annuli, then Xl 2

1
exteriors contain essential annuli are composite knots and cable knots. The
cable knots with unknotted core are just the torus knots, and they are known to
_ be determined by their group [14]. So let K be a mon-trivial knot, and let
Kp,q denote Fhe (p,q)-cable about K, that is, a curve on the boundary oN of
a tubular neighbourhcod N of K, homologous in ON to p[m]+q[2]. (Here, p
and q are coprime integers with |q] > 2, and (£L,m) is a longitude-meridian
pair on ON.) Feustel-Whitten [37] have shown that if Ipl > 3, then nKp,q

determines Kp,q' So prime knot complements are known to be determined by their
group except possibly for cable knots Kp,q with Ipl < 2.

The problem concerning these remaining cable knots turns out to be related
to the general question of whether knots are determined by their complement. More
precisely, suppose there exist inequivalent knots Kl’ K2 with homeomorphic ex-
" teriors X, s+ X, The homeomorphism X, * X,
in BXZ to i [m2] + n[ZZ], for some n#0. Then Hempel (unpublished) and

must take my to a curve homologous

Simon [141] show that if there is such a counterexample, with |n|¥ 1,2, or 4,
e af t + + + +.
then there exist cable knots of type (X1, X n/2) (n cven), or (L 2, X'n)

frn A with isomorphic groups, whose complements are not homeomorphic.



(1) the R-module structure of H ;R)

1 %y
(2) the module structure of Hl(Xk;R) over the group ring R[Ck]'

If R 1is an integral domain, and Q( ) denotes field of fractions, we also have

(3) for k < w, the product structure given by the linking pairing
Tl(Xk;R)><T1(xk;R) > Q(R)/R on the R-torsion subgroup of Hl(Xk;R). R =2Z |is

really the only case of interest here.)

(4) the product structure glven by'the Blanchfield pairing (see §7)

By K 3R) x Hy (X_5R) > Q(RIC_])/RIC_].

We may remark here that, for k < o, it 1s traditional to work with the
corresponding branched cyclic covering Mk’ rather than with the unbranched

covering X Since Mk is a closed 3-manifold, and for other reasons too (see

K-
§5), this is perhaps more natural. However, the £wo are essentially equivalent
from the present point of view, as it is not hard to show that
Hl(Xk;R) = Hl(Mk;R) ® R, as R[Ck]-modules, the module structure on R being
induced by the trivial action of Ck'

Apart from the obvious relatioﬂships between the above considerations 1-),
we have Fhat the R[Cw]-module Hl(xh;R) determines the R[Ck]-module Hl(xk;R),
l1<k<w, (see §5), and the Blanchfield pairing on Hl(&n;R) determines the

linking pairing on Tl(Xk;R), l1<k<o,

4. The Infinite Cyclic Cover

Let us first cqnsider the R[Cm]-module Hl(Xm;R). If t denotes the canoni.-
cal multiplicative generator of C°° s (determined by the orientations of S3 .and
K), we may identify R[Cw] with the Laurent polynomial ring ]I=R[t,t-1]. Since
R 1s Noetherian, 11 is also, by the Hilbert basis theorem. Furthermore, since
X 1is a finite complex, the chain modules Cq(&m;R) are finitely-generated (free)
N-modules, and hence Hl(xm;R) is a finitely-generated [-module.

The following argument of Milnor [96] establishes the crucial property that

t-1: Hl(&”;R) > Hl(&M;R) 1s surjective. (Since Hl(&»;R) 1s finitely-gencrated

and T 1s Noetherian, it follows that t-1 1is also injective.) The short exact



Taking R=Q 1in particular, we have a complete description of the
I"=Q[t,t—1]-modu1e H1 (Xw;Q) by a sequence of non-zero ideals
(Yl) c (YZ) o E (Yn). The picture over {\=Z[t,t-1,] is not quite so clear, as
A 1s not a principal ideal domain, but one can define some invariants. Thus there
are the elementary ideals E1 c E2 C..., where Ei is defined to be the ideal
in A generated by the determinants of all the (n-1+1) x (n-1+1) submatrices

of any mxn presentation matrix for the module [164, pp. 117-121]. (We may
suppose m > n without loss of generality, and we put Ei='A if i > n.) Even
these are fairly intractable, but since A 1is a unique factorization domain, each

Ei is contained in a unique minimal principal ideal (A One thus obtains a

i')'

sequence of elements Al s A2 s ey An of A, each determined up to multiplication

by a unit (the only units of A are I t:r, r € Z), such that Ai+1 IAi .

1 < i< n. Suitably normalized, Ai 1s called the 1th Alexander polynomial of

the knot, A1=A being called simply the Alexander polynomial. Equivalently, one

A is the ifth Alexander

can consider the elements A, defined by 7\i=Ai/Ai+1 ioAg

i

Invariant. These definitions are essentially contained in Alexander's paper [2].

The surjectivity of t-1: Hl(Xm) > Hl (Xm) can be expressed by saying that,
regarding Z as a A-module via the augmentation homomorphism €: A >Z,
Hl(Xw) ®A Z = 0., 1t follows that e(Ei) =Z, and hence E(Ai)=Ai(1) =*1. 1t
seems most natural (see §8) to normalize Ai so that it is a polynomial in ¢t such
that Ai(O) 9‘"0 and Ai(l) =1, From this it 1s not too hard to show that if the
elements Yy of I' which describe the direct sum decomposition of HI(XM;Q) are
normalized so as to be polynomials with integer coefficients with g.c.d. 1, such

that Yi(O) #0 and Yi(l) > 0, then 7\i=y , 1 <1< n. It thus transpires that

i
in the presence of the integral information Hl(X) :Z, the Alexander polynomials

are essentially rational invariants.

In view of the last remark, it 1s no surprise that the Alexander polynomials
do not in general determine the elementary ideals. For example, the knot -946 in

the Alexander-Briggs table and the stevedore's knot (6 have modules H1 (Xm)

1)
which are, respectively, A/(2-t) ® A/(2t-1) and A/(2-5t+2t2). In both cases,

lll(Xw;Q) i:x the cyclic I*-module l‘/(2-5t+2t2). llowever, for the stevedore's



If x X~ generate Hl(X;) as a A-module, then {tjxi: l<i<n,

17
-o < j < w] generate Hl(Xm) over Z. Since Axi=0, 1 <1<n, we see that
1f the constant coefficient of A (and hence, by the symmetry of A (see §7), the
leading coefficient also) is X 1, then Hl(&n) is finitely-generated over 7,

and 1s therefore free abelian of rank deg A. The converse is also true. For

these and other results on the abelian group structure of Hl(Xw), see [24], (also

[121]).

5. The Finite Cyclic Covers

To relate Hl(xk;R) to H1(¥m;R)' consider the short exact sequence of chain

complexes

k
£e-1 . _
0> C*(Xw;R)_—————+ C*(&m;R) > C*(Xk,R) >0 .

As before, this gives rise to an exact sequence

ok
Hy (X R) ek, Hy (X_3R) + H (K GR) >R > 0 .

If we give R the trivial Il-action, and Hl(Xk;R) the IT-module structure induced
by the canonical covering translation, this is an exact sequence of I-modules.
From this and the fact that Hl(xk;R) = Hl(Mk;R) @ R (with the trivial Il-action
on R), it follows that, as II- or R[Ck]-modules,

_ L@
Hl(Mk;R) = coker(t -1)

This relation between Hlo%k;R) and Hl(&w;R) can be conveniently expressed
in matrix terms. Let B(t) be any presentation matrix for Hl(Xm;R) over I,

k
with respect to generators Xpseees Xy SAY. Then coker(t -1) 1is generated

(Z)Throughout this section, it is understood that this refers to the action on
}11 ()(‘m iR).



where zi is the number of distinct roots of Ki which are kth roots of 1.
This result was first obtained by Goeritz [52], by explicitly diagonalizing B(T)
over C.

Note that (as was pointed out in [52]), Hlﬂﬁk;c), or equivalently, the first

Betti number of Mk’ does not just depend on the Alexander polynomial / /

A==K1 ,...,Xn . The order of Hl(Mk), however, does. Indeed, using Coeritz's .t

diagonalization it may be shown that

2nci

order Hl(Mk) = 'det B(T)l = ]i;fsQni)l, where w = e k
(This was first observed by Fox [41]; the proof given there, however, needs some
modification.)

The behaviour of Hi(Mk) as a function of k is sometimes quite interesting.
For example, 'if k is odd, then Hl(Mk) is always of the form G & G [119], [54].
Other results, in particular, necessary and sufficient conditions for Hl(Mk) to
be periodic in k, are given in [55].

We shall mention Seifert's work on branched cyclic covers [136], [137] in §8.

6. The Group Again

Let = be the group of a knot K. Since covering spaces of the exterior X
of K correspond to subgroups of x, much of the material discussed in §§3-5 can
be expressed in purely group-theoretic terms. Thus nl(&m) is just the commutator
subgroup n' ;f n, so Hl(xm) is isomorphic to n'/n". The A-module structure
of Hl(XN) can also be described group-theoretically: let z ¢ n be any clement
which maps to the chosen gencrator t of C, s then the action of t on Hl(&M)
corresponds to conjugation by z on x'/n". Hence, given some presentation of r,
it will be possible to derive a A-module presentation for r'/x". If the presen-
tation of m 1is in turn obtained in some way from a projection of K, we will then
have a recipe for computing the A-module x'/x" from a knot diagram. The algorithms
described by Alexander [2] and Reidemeister [125, II, §14] are of this kind, based

respectively on the Dehn and Wirtinger presentations of the knot group.



unique Z-linear function

5o ¢ ZIF] > ZF)

such that
IR
axj °13
d(uv) du ov
and = + u <
ij 8$j ij

If w 1s any word in the x,'s, regarded as a loop in X based at p, w 1lifts

3

to a unique path W starting at ;. It may then be readily verified (for example

by induction on the length of w) that, as a l-chain in i,

w = Zmp( )%
=1 o%y 3

In particular, with respect to the Z[H]-bases {Si: 1<1i<m), [;j: 1<ji<n),

62: Cz(i) > Cl(i) is given by the mxn matrix

Bri
(ﬂw(g;]))

One also sees that 81: Cl(i) > CO(E) is given by
), (x,) = x,)-1)p .
41(j) (oup ( j) Jp
The short exact sequence

0 > ker al > c_:]_ X) > im ,31 >0

glves, after factoring out by im d,, the short exact sequence (of Z[Ill]-modules)



~

A - 3_q '
Hq(xm,OXN,R) = H™ . (Homn(C*,H)) .

where — denotes the conjugate module in which the action of x e i 1is defined by
a —> na. We are mainly interested in the case q=1. Let us then note that since
Hl (axw;R) 1s generated by the boundary of the lift of a Seifert surface, Ill(axw;R)
> Hy (X 3R) 1is zero, and hence Hy (X ;R) = H (X 50X ;R).

Now suppose R 1is a field, so that I is a principal ideal domain. Then, by
the universal coefficient theorem and the fact that HZ(XOO;R) is M-torsion, (the
surjectivity of t-1 on Hz(Xw;R) follows in the same way as for Hl(Xm;R))? we

get
Hy (3R) = Exe (0 (X ;R),T)

Since Hl (XN;R) is also Mi-torsion, we finally obtain the fundamental duality iso-

morphism
Hy (X 3R) = H; (X ;R)

In particular, taking R=Q, this implies the familiar duality property of the
Alexander polynomials

deg A

4 = (Z:L) , l.e. A (D) =t i -1

A (e )

(Note that this, and the fact that Ai(l) =1, 1implies that deg Ai is even.)
Now consider the case R =Z. Levine [85] shows that, since 'A has global
dimension 2, the universal coefficient spectral sequence still gives us an isomor-

phism
11,1 (Xw) = EXCA (Hl (X_),0)

It follows from this, incidentally, that lll(Xm) 1s Z.-torsion-frece. (Here 1is the



Consider the case when R 1is a field. Since the adjoint to is the

Pr

composition
Hy (X 5R) = Ext (H, (X ;R),T) = Hom  (H) (X sR),Q(M/T) ,

BR 1s non-singular. Here, the first isomorphism comes from duality and universal

cocfficlents, and the second from the short exact scquence
0— I — Q) — Q(M/T — 0,

using the fact that Hl(xw;R) is Il-torsionm.

It turns out that this is also true whem R =Z (see [12], [85]), that is,

B=B, induces an isomorphism _wwu.am " ,MJ
o g
H, (X ) = Hom, (H, (X ),Q(A)/A) e \ ,\,,hﬁ'!ﬂd .
1 X)) = Hom, (H, (X ),Q . _ Bla " s
{'\U(H ! ”p"“o ﬂ
(1

As regards the classification of Blanchfield pairings, the case R=@ has e =

been done, as follows. In [152], Trotter defines a function X: Q(I')/I' — Q )\0?’*

such that . \Nj‘)\;} }0 .
. . - —'—'-"_-___——_
XBQ . Hl (Xm ’Q) X Hl (Xoo 1Q) —> Q Hm‘h(ulg) @%J

is non-singular, skew-symmetric, has t: Hl(xm;Q)—> Hl(xm;Q) as an isometry, and
has the property that the isomorphism class of the pair (X.BQ,t) determines ‘the
isometry class of BQ. But pairs consisting of a non-singular e-symmetric
(c=i 1) bilinear form on a {inite dimcnsional R-vector space, together with an
isometry, have been classified (see [98]). The rational Blanchfield pairings are
thereby also classified.

When R =2, a complete classification has not yet been achieved. (See [84],

[152], for partial results; also §9.)



a: Hl () le(F) — Z !
defined by
a(lw], [2]) = 1k, z2) ,

where w,z are l-cycles in F, w+ is the cycle obtained by translating w off
F in the positive normal direction, and 1k denoteé linking .number in SB.' This
form has the property that CL-CLT (T denotes transpose) is just the intersection
form on H'l (F). 1In particular, det(cx,-cx.T) =1. Choosing some basis for Hl(F)’

we get a 2hx2h Seifert matrix A representing a, where h = genus F.

(-]

A Mayer-Vietoris argument on Xm= U Yi shows [80] that Hl(Xm) is pre-

{i=-»

sented as a A-module by the matrix tA -AT. In particular, ﬁp to a unit of A,

the Alexander polynomial A=d‘et(tA-AT). "Since putting t=1 gives the unimodular

AT (3

matrix A - , the properties e(Ei') =Z, s(Ai) =1, of the elementary ideals

and Alexander polynomials are immediate.

The consequences of duality are also easily seen in this setting. For example

the conjugate module Hl (Xm) is presented by the matrix t—lA —AT, which is

equivalent to (tA—AT)T. In particular, E:’L=Ei and (Zi) = (Ai) for all 1.
Since de't(tA-AT)%O, the presentation of n‘l(xm) corresponding to tA-AT is

actually a short free resolution

> F >H1(x('n)——>0,

where F0 s Fl are free A-modules of rank 2h. Hence ExtA(Hl(Xm),A) =

coker (Hom(p, 1d)), and the latter is clearly presented by (tA—AT)T. So we derive

our previous duality statement

(3)

This is why it is natural, at least for i=1, to normalize so that Ai(l) =1.



B * 0] B 0 0]
A . A
A > . e or
* 0 0 O
0 5 * * 0
n q_ "O . 0 1 O_

(The *'s record the way the handle links F.) The equivalence relation on Scifert

matrices generated by congruence and these enlargements is known as S-equivalence.

It will also be convenient to call two knots S-equivalent if they have S-equivalent

Seifert matrices.
S-equivalence was first introduced, in an algebraic setting, by Trotter [150].
It also appears in [107]. The following remarks show that it is likely to be an

important concept. Firstly, any two Seifert matrices for a given knot K are S-

equivalent.(4) (lere is an outline of a proof. Let the matrices be associated

with Seifert surfaces for K, and let these in turn correspond, via Lrans-

For 1y
versality, to maps Pg pl: X — Sl, such that p0|ax==p1[ax, where X 1is the
exterior of K. Then P> Py extend to p: XxXI —» Sl,' with ptlax==p0|ax for
all t e I. Transverse regularity gives a connected, orientable 3-manifold

M C XxI such that 8M=F0U8Fix IUF Now choose a handle decomposition of M .

1’ .
on F0 with only 1- and 2-handles, such that the former precede the latter, and {
such that, regarding M as FolJcollarth;ndle(Jcollar... , each handle is em-

bedded in a level Xx{t)}, and the collars are compatible with the I factor i
(sece [72]). Then in a level between the 1- and 2-handles, M intersccts X in a |

Scifert surface for K which is obtained from each of F by adding hollow |

o’ f1
handles.) Secondly, given a Seifert matrix A for K, it is easy to see that \

any matrix obtained from A by a sequence of enlargements (and congruences) is

also a Seifert matrix for K. (But this 1Is not necessarily true for reductions.)

(4)1n [107], it is noted that by examining the effects of the Reidemeister moves on
a knot diagram, the S-equivalence class of the Murasugi matrix can be shown to
to be an invariant of K.



(1) aA(l)=1, and

deg A -1

(11) aAa(e)=¢ At 7).

To do this, Seifert actually shows that any integral matrix A such that

T .
A-A"=J can be realized as a Seifert matrix. This is done by taking an orient-

able surfacce of the appropriate genus, regarded as a disc wiih hands, and cmboedding
it in S3 by twisting and 1inkinglthc bands s0 as (o realize A as the wmalrix
(with respect to the basis of Hl(F) represented by the cores of the bands) of
the Seifert form. It follows (by changing basis) that any matrix A with
det(A—AT)= 1 is a Seifert matrix.

It turns out that in Seifert's realizatiom of the polynomial, the module
which arises, i.e. the module presented by tA -A:, is actually the cyclic A-mod-
ule A/(A). By taking connected sums, it follows that any sequence of polynomials

A

1 ,...,%n satisfying the (necessary) conditions

(1) AM)=1, 1<ign
(11) xi(t)= 5 AL (), 1<1<n, and

(1i1) ALy l}\i ;

can occur as the Alexander invariants of a knot. (Thls can be equivalently ex-
pressed in terms of the Alexander polynomials.) A different proof is given in
{79].

In particular, the I’-modules which can occur as Hl(xm;Q) for some knot are
completely and simply characterized.

Over the integers, we have the following realization result of Levine [85],
which brings in the Blanchfield pairing:

Let H be a finitely-generated A-module such that t-1: H— H 1is surjec-
tive, and let B: HxH-—> Q(A)/A be a non-singular, sesquilinear, Hermitian
pairing. Then [} 1s the Blanchfield pairing of some knot.

To prove this, it 1is sufficient to show that every such [ 1s given by
(1-t)(tA-AT)-1 for some integral matrix A with det(A—AT)= 1. (Is there a

direct algebraic proof of this?) This Levine does by showing that B may be



is invariant under any of the 3 so-called Reidemeister moves [3], [123] on a knot
diagram, and is therefore an invariant of the knot K. In particular, the absolute
value of the determinant, and the Minkowski units Cp for odd primes p, are in-
variants of K, (but C2 and the signature are not) [51].

Ip [137], Seifert relates C to the 2-fold branched cover M of K, by ob-

2

serving that the latter can be obtained by cutting S3 along the spanning surface
for K corresponding to the shaded .regions of the knot projection and gluing together
two copies of the resulting manifold in an appropriate fashion. In particular, he
shows that G 1is a presentation matrix for HI(MZ)’ and that the linking form
Hy ) x Hy My) — Q/Z is given by T G-l, the sign depending on the orientation
of M2' (See also §12.) Note that ]det G|==order Hl(M2)==|A(—1)l is always odd.

Such linking forms are classified by certain ranks and quadratic characters
corresponding to each p-priwary component (p an odd prime). See {135], [62]. In
[120] (see also [78]) it is shown that these invariants determine the Minkowski
units CP, and, more generally, Kneser-Puppe in [76] show that in fact the link-
.ing form completely determines the equivalence class (in the above sense) of the
quadratic form. .

More recently, Trotter [150] considered the quadratic form given by A-+AT,

where A 1is a Seifert matrix for K. (See also [107], which studies M-+MT,

_______________________________________________—-—1

where M is the Murasugi matrix.) S-equivalence on A induces the equivalence

relation on A+AT generated by congruence and addition of a hyperbolic plane
01

This is a stronger equivalence than the one discussed previously. Also,
1 0

it may be shown that if the shaded surface F obtained from a knot projection
happens to be orientable, then the corresponding Goeritz matrix coincides with
A-+AT for some Seifert matrix A associated with F. Finally, for any Seifert
matrix A of K, A-FAT is in the equivalence class of Goeritz matrices of K.
This may be seen by isotoping the given Seifert surface, regarded as a disc with
bands, so that the bands cross over as shown in Figure 2, where + denotes omne
side of the surface and - the other. The modification shown in Figure 2 produces

an orientable surface obtainable from the indicated knot projection by shading; the



q . 2-q . 2 Ry =
HY(X_,0X ;R) x H™ 1(X_,3X _;R) » H (X_,3X ;R) = R
is non-singular. Taking q=1 and setting
(x,y) = x U (ty) +y U (tx)

then defines a non-singular, R-valued, symmetric bilinear form (, ) on
Hl(X;,BXh;R), With respect to an appropriate basis, (, ) is given by A-+AT,
where A 1is a non-singular Seifert matrix, and thus coincides with Trotter's
quadratic form (tensored with R). (See [34] for details.)

We remark that the non-singularity of the above cup product pairing can be
interpreted as a Poincaré duality in &» of formal dimension 2. However, this
non-singularity definitely fails over Z; for example, Hl(Xm,BXm) (:Hl(}(m))
is often zero.

Taking R =R, 1let A be a symmetric, irreducible factor of the Alexander
polynomial, so K==(t-§)(t-g3 where ¢ =eig, say. Milnor [96] then defines
cg(K) to be the signature of the restriction of (, ) to the A-primary component.
The signature of the knot o(K) 1s the sum of all the UQ(K).

These signatures UQ(K) turn out to be equivalent to the signature function
io

og Matumoto has shown [94] that GQ(K) i1s just the jump in o, at e

12. Some 4-Dimensional Aspects

It 1s enlightening to consider the branched cyclic covers from a 4-dimensional
point of view. "The basic construction Ls the following. Pushing the interior of

a Seilfert surface F for K in S3 into the interior of the 4-ball B4 gives

A

a properly embedded surface F c 34 with a§=¥K. For 1 < k < w, we then have

A
Mk= th, where Mk 'Vk is the k-fold branched cyclic cover of (SB,K), (HA,F)
respectively.

Let us first consider the case k=2. 1In S3, choose a thickening Fx [-1,1]

of Fx0. Then V, may be constructed by taking two copies of Ba, and identi-

2
fying (x,t) 1in one copy with (x,~t) in the other, for all xe F, te [-1,1],



as an orthogonal direct sum EO ) E1 @...8 Ek-l’ where Er is the wr-eigenspace

of r. Let cr(Vk) be the signature of the restriction of our Hermitian form to

Er' It then turns out that
= - r,, T
Ur(Vk) = sign((l-w YA + (1-w A7), 0<r<k

where A 1is a Seifert matrix for F. (See [32], [154], [18]). These signatures
Gr(Vk)==GKGnr), 0<r<k, are the k-signatures of the knot K. In particular,

ql(Vz) is just the signature of VZ'
We saw earlier that cK(g) depends only on K, Here, rather more is true.

4

We could construct V with BVk==M using any (orientable) surface F < B

k k
with B(BA,F)==(S3,K). Then cr(Vk) is independent of F. To see this, we shall

use the G-signature theorem [6]; (for an elementary proof for semi-free actions in

dimension 4, which is all that Is needed here, see [57]). Recall that tle Ts—sig-

natures sign(rs,Vk) are defined as follows. We have HZ(vk;C):=H% ®H @ HO,

+ 0
where the Hermitian 'intersection' form is T -definite on H and zero on H .

Then
sign(rs,Vk) = trace(rslﬁ+) - trace(rslH-)

By similarly decomposing each eigenspace E£==E: @ E; @ Eg , We may take

+ o+ _+ + , ~
H = EO &3] El ®...® Ek-l’ etc., which (recalling that UO(Vk)-O) shows that

k-1

sign(rs,vk) = 3 mr
r=1

s
cr(Vk) ; 0<s< k.

Inverting, we obtain

k-1
Ur(Vk) =k s§1 (w rs-l)sign(rs,vk) , O<r<k.

-



some A ¢ A, This Ls enouph to show that fa not finftely-pencerated.  Late

1

the concordance invariance of the signature was proved |107}. (Murasugi works

il

entirely with his matrix M, but as we remarked earlier, this is a particular
Seifert matrix.) This implies the existence of elements of infinite order in C1.
The Miwkowski units are also concordance invariants [106], as are the p-signatures
[148] and the signatures UQ(K) [96].

This information is all subsumed under the invariance of the 'Witt class' of
the Seifert form, which we shall discuss soon, but we pause bricfly to consider the
signature function O * Sl——> Z of §11, as a direct approach to this is possible

via branched covering spaces. ,
2xri

Recall (§12) t.hat for £ =e £ a k! root of 1, UK(E,)=0'r(Vk), the

signature of the restriction to the ¢-eigenspace of the intersection form on the
k-fold branched cyclic cover Vk. Now suppose (S3><I,T) is a concordance, be-
tween knots Ko and K1 s, say, and let Wk be its k-fold bralnched cyclic cover.
If k 1is a prime-power, then (as in 5.5)’ H*(Wk;Q) = H*(S3xI;Q); in particular,
H2 (Wk;Q) =0. Hence, by Novikov additivity of the eigenspace signatures, crko(g) =

o'K (). (In particular, the p-signatures of Tristram are concordance invariants.)
1

Since the roots of 1 of prime-power order are certainly dense in Sl, and since

I is continuous except at finitely many points in Sl, it follows that Og =g

‘ g .0 1
almost everywhere. llence 1f we define LS Sl—> 7Z. by taking the average of the
onc-sided 1imits of gp At cach point, we sce that % 1s a concordance invariant.

This is equivalent to the concordance invariance of the og(l()'s, proved in [96]
(see §l1). Compare also [81, p.242]. (Note that LN takes values in Z, since
if £ 1is not a root of the Alexander polynomial of K, A(¢) (see §11) is non-
singular; hence aK(g) =rank A(t) (mod 2) is even. Also, Matumoto has shown [94)
that if the 1st Alexander invariant (or minimal polynomial) ?\1 has no repeated
roots, then TK=0'K.)

We now turn to the Seifert form. (The treatment which follows is that of
Levine [81], [82].) Let K be a slice knot, so (SB,K) = .)(n[',l)) for somc smooth

! . : 2
2-dise Do A tubular nelghbourhood of D in B way be Ldent i Cled with Do b7y

let V=B4—Dx int D2 be the exterlor of D. Then dv=XU DxSl, where X is



isometry t, such that as 1 is not an eigenvalue of t. The classes of such iso-

metric structures, under the equivalence relation obtained by factoring out forms

L3

with a t-invariant subspace of half the total dimension on which (,) vanishes,

form a Witt group Wb(qm,Q) under @. An isomorphism

Wg (@) —> W (C_,Q)

is induced by sending a non-singular matrix A representing a class in WS(Q) to
the class in W(Cm,Q) with matrix representatives (A-FAT,A-lAT). (Every class in
WS(Q) has a non-singular representative.) Note that if A is a non-singular
Seifert matrix for a knot K, then A-FAT represents the quadratié form of K,
and A_]'AT represents the automorphism t: Hl(Xm;Q)-——9 Hl(&m;Q)-

A complete set of invariants for Wo(Cm,Q) -has been gilven by Levine [82],
using results of Milnor [98]. These are defined for each A-primary component V%,
where A is a symmetric, irreducible factor of the characteristic polynomial of ¢,
and are: the exponent mod 2 of A 1in the characteristic polynomial, the signa-
of §11), and a Witt

o

class invariant version (analogous to a Minkowski unit) of the Hasse invariant of

ture of the restriction of (, ) to VK (this 1s the o

the restriction of (, ) to Vy+ In particular, W,(C_,Q) 2z e (=/8)” e (@/)”.

The image of the injection WS(ZD —> WO(Cm,Q) is also isomorphic to
z"e (z/4)" o (z/2)".
A different but related approach to the computation of WS(ZD is described

by Kervaire in [73]. TFor further results on the structure of WS(ZD, see [143].

4o+l 4n+3
in S

Similar definitions and results hold for knots of S for

n > 0; in particular, there is a knot concordance group C and a homomorphism

4n+l

v

41’ Cant1 7 W5 (2)

Levine has shown that, if n > 0, ¥ i3 an isomorphism [81]. According to

4nt+l
Casson-Gordon [17], [18], however, this is not the case for n=0. We shall brief-

ly summarize their argument.



It can be shown that T(,X) 1is independent of r and Vk'

Now suppose that K 1s a slice knot, so (S3,K)=6(B4,D), say. Let wk be

the k-fold branched cyclic co.ver of (BA,D), and take k to be a prime-power.
Then ﬁ*(wk;Q)=0 (see §5), so, by duality, Hl(Mk) has order 17,2, wherc
G=ker(1-11('M.k) —_ Hl(Wk)) has order £. Note that G has the property, intrin-
sic to Mk , that the linking form ”1 (Mk) )<H1 (Mk) — Q/% wvanishes on . let
V be thé closure of the complement of a tubular neighbourhood of D 1in H/i, and
write V, for the k-fold cyclic cover of V, 1 < k <. Then ka =N

Let X be a character of prime-power order m on Hl(M'k)’ such that

X(G)=1. There is then a character X om Hl(wk) such that

By @) ——> H; )

™A

commutes. Suppose (but only to simplify the exposition) that X also has order
m. Composing with the canonical epimorphism ll1 (Vk) -—> II] (wk), we got a

character X' on Hl(Vk) such that

H, (N

1

k

RN

c
m

commutes. We can thercfore use Vk to compute T(K,X). But 1t can be shown that
since V is a homology circlé and m 1s a prime-power, ll*(\hl'm;Q) is finite-di-
mensional. In particular, 112'(\7w) is Z/.[Cw]-torsi.on. Since €(t) 1is flat over

. £ ~ _ i
Z[me Cm], it follows that HZ(Vk,C(t)) = Hz(Vm) ® €c(t) =0, and there

Z[me Cm]
fore w(Vk) = 0. Again, since V {is a homology circle and k 1is a prime-power,
H2 (Vk;Q) =0 (see §5). Hence wo(Vk) =0 also, giving 7(,X) =0.

The vanishing of 7t(K,X) for certain characters X 1s therefore a necessary

condition for K to be slice. To utilize this condition, we first define a

o

]



If, in addition, K ig slice, and x Satisfieg the conditiong desc
which then imply that

TX,X) = 0,

Tibed carlior
We obtaip

[cr(Mk,X)[ <1 .

Since the invariant

dition,

o(Mk,X)

For €Xample, if x
Mk is a lensg Space,

nature theorem.

€an oftep be calculated, this jig 4 workahie con-

is a 2-bridge (or Tational) knot,

and cO%k,X) can be éalculated

Also, ip this case,

€an be slice only if

and k=

ﬁ; will always pe a
so K

(for Sultable X)
shown that

From this

it can he
a4 large Dumber of 2—bridge knotg

K  have w([K])= 0
are not slice knotg, -

in .wq (), but

{knots] —_— [3-man1folds}

which may be defined,

of 3-manif01ds,

K ;}2
leity of knots,

tripley (K

—————
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, where DB 1is the

3

M=H_'_Ua H , say, with BH+ connected, and H BxI

corresponding branched cover of (BZ,P). If the projection M —> § is k—sheéted

away from the branch set, and m-sheeted over K, then
LE) =k X(B2) - (kem)X(P) = mb - (b-1)k .

It follows that H+ is a solid handlebody of genus (b-1)k -mbt1l, giving a
llecegaard splittinu—of M of that penus. For the k-lold branched cycelic cover,
the genus is (k-1) (b-1). 1In particular, for the 2-fold branched cover, we just
get b-1, in this way, knots of increasing complexity are mapped to 3-manifold
decompositions of increasing complexity. ’

Now it is known that the 2-fold branched covering function is not injective;
many examples of pairs of prime knots with the same 2-fold branched cover are des-
cribed in [1l1]. It is injective, however, on the set of 2-bridge knots. There,
the 2-fold branched cover has genus 1, and is therefore a lens space, and Schu-
bert has proved [132] that this lens space determines the knot. This injectivity
already fails for 3-bridge knots [11]. It has been shown by Birman-ililden [10],
however, as a consequence of a rather special feature of the group of isotopy
classes of homeomorphisms of a closed surface of genus 2, that if we regard the
2-fold branched covering function as a fumction {knots] —> {equivalence classes
of Heegaard splittings of 3-manifolds), then it is injective on the set of 3-
bridge knots.

Finally, in this context we might mention the result of Waldhausen [157],

which says that only the unknot has 33 as its 2-fold branched cover.

15. Knots and 3- and 4-Manifolds

Continuing in the general framework of §l4, let us now consider the possibil-
1ty of using knowledge about knots to give information about 3-manifolds. In par-
ticular, functions (knots) —> (3-manifolds} which are surjective, or at lecast

have a sizeable image, will be of interest.



homology spheres, in particular, the dodecahedral space discovered carlier by
Poincard, could be obtained in this way from torus kunots. Iundeed, the Property P
conjecture (see §2) is that if K 1is non-trivial and a#0, then ME;l/a) is
never simply-connected.

It seems likely that the function M(_;B/a) is never injective, although this
has only been verified for certain B/a [53], [87]. However, it may not be un-
reasonable to conjecture that, denoting the unknot by O, and excluding the trivial
case a=0, MK;p/a) = M(©O;B/a) only if K=0. The case ]B|= 1 is just a weak-
cned form of the Property P conjecture, and the case [ =0 has also received some
attention (under the name 'Property R').

‘Turning to the question of surjectivity, clearly the most one could hope to
obtain in this way is the set of all closed, orientable 3-manifolds M with Hl(N)
cyclic. This seems highly unlikely. In particular, it is surely mnot true that all
homology spheres can be obtained by Dehn's original method, although this is
apparenﬁly rather difficult to prove.

The a priori restriction on the h;mology disappears if one allows, instead of
knots, links with arbitrarily many components, and it is indeed the case that omne
can now obtain all closed, orientable 3-manifolds. Actually a stronger statement
is possible. If L is a framed link in S3, then (ordinary) framed surgery on
83 along L gives a 3-manifold M(L), say. Wallace [159] and Lickorish [86]
have shown that this function {framed links) —> (closed, orientable 3-manifolds)
is surjective. Wallace's proof is essentially 4-dimensional; it uses the theorem
of Rohlin [126] that 3-dimensional oriented cobordism ﬂ3= 0, together with
handlebody techniques. (The argument is: given M, there exists W such that
M=0W; W has a handle decomposition with one O-handle and no 4-handles. Replace
the 1- and 3-handles by 2-handles ('handle trading'), gi;ing W'. The attaching maps
of the 2-handles in W' now define a framed link L with M = M(L).) Lickorish's
proof, on the other hand, is 2-dimensional, in the sense that it is based on the
fact that the group of isotopy classes of orientation-preserving homeomorphisms of

a closcd surface is gencrated by 'twists'. (This was first proved by hehn [291.)



proofs of this (assuming 1, = 7Z) have been given by Casson and (independentiy)
I

MaltsumoLlo (hoth unpublished), and lTink-theovetic ideas are fovolved inthese prools.,
Many questions concerning the existence of certain surfaces in 4-manifolds arc

equivalent, or closely related, to questions about knot and link concordance. Thus
Tristram [148] used his p-signatures to show that a class ax+by in H2(82><Sz) =
Z ®7Z can be represented by a smoothly embedded 2-sphere only if a and. b are
coprime. (It is still unknown whether this condition is sufficient, except for

the cases |a|l <1 or |b| < 1.) As we have seen in §12, signatures of knots (and
links) are probably best studied from a 4-dimensional point of view anyway, so

this kind of connection is not surprising.

Perhaps morec surprising is the result of Casson (unpublished) that simply-
connected surgery is possible in dimension 4 if each of a certain explicit set of
infinite sequences of links contains a slice link. On the other hand, failure of
the latter condition implies the existence of some kind of pathology in dimension
4. TYor example, if the sequence of (uétwisted) doubles of the Whitehead link con-
tains no slice link, then there is a 4-manifold proper homotopy equivalent to
S ><Sz-point whose end is not diffeomorphic to 53><R, and a 4-dimensional counter-
example to the McMillan cellularity criterion. (These results are also due to

Cassomn.)

16. Knots and the 3-Sphere

All the abelian algebra discussed so far is valid for knots in homology 3-
spheres. Similarly, all known knot concordance invariants are actually homology-
cobordism invariants. The group of a knot in S3, of course, has weight 1 (belng
generated by the conjugates of any meridian element), but again this is true of a
knot in any homotopy 3-sphere. Still, it is clear that the theory of knots in the
3-sphere, having the concreteness and immediacy of the physical world, is of prime
importance. Morecover, even propertics which hold in more general settings might
be more casily observed in the 3-sphere. This has certainly been the case his-
torically. VFor cxample, the property A(l) =1 of the Alexander polynomial was

first proved by means of knot projections [2]. (In fact the purely combinatorial



17. Other Topics

Here we briefly mention one or two topics which we shall not be able to discuss
in detail.
First, there is the whole question of symmetries of knots, For Sl-actions,

the answer is known: only the unknot can be the fixed-point set of an Sl—action

on S3, and the only knots which are imvariant under (effective) Sl—actions are
the torus knots. (Ihis follows from the theory of Scilert [ibre spaces [134] 5 see
[65].) TFor the case of 7./p-actions on 33 fixing a knot K, we ol coursc have
the Smith conjecturc that K must be trivial. This is surcly onc of the major un-

solved problems in knot theory. It is known to be true for p=2 [157], and there
exist various other partial results, including [16], [42], (45], [50], [56], [109].
Necessary conditions are given in [149) and [108], for a kmot K to have a symme-
try of order n 1in the sense that there is a hbmeomorphism h of 53 of period
n, with fixed-point set a circle disjoint from K, such that h(K) =K.

Given an unoriented knot X in oriented 53, one can ask whether or not there
exists an orientation-reversing homeomorphism of 83 taking K to itself, (or
equivalently, an orientation-preserving liomeomorphism of S3 taking K to its
mirror-image). If there is, K 1is amphicheiral. If K is now oriented, omne can
ask whether there is an orientation-preserving homeomorphism of S3 taking K on-
to K but reversing its orientation. If so, K 1is invertible. If K is amphi-
cheiral, then, for example, all its branched covers will support orientation-re-
versing homeomorphisms. Because of this, amphicheirality is often relatively easy
to detect [135]. Since many knot invariants are independent of the orientation of
the knot, however, it is harder to establish non-invertibility. This was first
done in [151], by analysing automorphisms of the group. See [71], [161] for further
results. Two interesting conjectures relating these concepts to symmetries (sece
(75}) are: K is amphicheiral if and only if K is invariant under recflection
through the oripin (van Buskirk): and: K is invertible if and only if there is an
orientation-preserving involution of S3 taking K to itself, reversing its
orientation (Montesinos). Apparently these are true for knots with small crossing

number.
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