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INTRODUCTION

Artin's Braid Group B on n strings can be
defined as a certain group of automotphisms of a free
group F, on n free generators. Artin has shown that to
every knot or linkage in 3-space there corresponds
a class of conjugate elements in BM_( for some n).

For this reason, the transformation provlem
in B, ( i.e. the characterization of all elements of Bm
which are conjugate with an arbitrarily given element)
ig of topological interest. One way of approaching the
transformation problem is the construction of represen-
tations of Bm in terms of finite matrices, since the
eigenvalues of a matrix are invariants of its class
of conjugate elements.

In the present paper, we étudy various represen-
tations of B, from a group theoretical point of view.
We start by observing the following fact: If Vis a
normal divisor of F, which admits all of the automorphisms
of B,, then Bm acts also ( as a group of automorphisms)
on Fu/C. This group of induced automotphisms of F./C

is a homomorphic image of Ba. Similarly, if C admits
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all the automotphisms of a properly-chosen subgroup of Ba,
then that subgroup acts omn E,/C, and we obtain a homo-
morphic image of that subgroup. If C is the second
commutatot group FII of\E”, we can obtain a homomorphic
image of a certain subgroup I, of B, in this manner.
Moreover, we can represent this image faithfully by
matrices of order n, whose elements belong to & ring
generated by n indeterminates and their inverses. If

we wish to obtain a representation of the whole group B,

we may do this in either one of two different ways.

One way is to set our n indeterminates equal to a single

indeterminate x, and thus to obtain a representation
which was found by Burau. In doing so, we may be adding
additional relaticans to our brzid group; we can prove

that Burau's matrices form a fuithful representation of

Ba @cting on a quotient group of F,, where the normal
divisor contains F! as a proper subgroup. The other
possible method is to take advantage of the fact that I,
is of finite index in B,. Thus the group Bm as it acts
on F./FIl can be represented falthfully by a group of
matrices which are still of finite order, although this
order is higher than n. Whether these matrices represent
B, faithfully, however, is still an open questicn. No
elements of B, are known, other than the identity, which
leave the residue classes of F) in F, invariant, but

it seems a dfficult proposition to prove that none exist.
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ON BRAID GROUPS

Definitions and backeground information

The Braid group B , as defined by Artin [1],

is generated by ¢, , G ,s..., O, Wwith the defining

relations
% O, 020 4 T, O iu
O v— O (&= menas comm:ite with)

any element of this group will be called a braid.

Let d;,»0"; 0 ;4,.--0 4, Where k» i,

Artin has shown [1] that B, is generated by o=, and d,..
The defining relations for this set of generators are:

d\:. s (o=, dm)n-'

o, — di, o d;, forisiss
The center of this group is the cyclic group generated by
a~.[2) . The group obtained from B, by adding the
relation d,, = 1 will be denoted by B.*.

This group B, has a geometric interpretation [l,é]
as the group of braids with n strings. There is a per-
mutation of n objects naturally associated with every
element of B.; namely, if n objects, one placed at the
upper end of each of the strings of the braid, travel

dowvm along their respective strings, they will arrive at
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the lower ends, in general, in a different order. This
relation between braids and permutations can also be
expressed in purely group-theoretic terms; namely, if
we add to the relations defining B, the additional
relation d"f=l, the resulting group is isomorphic to
the symmetric group Zim; therefore Z:M is a homomorphilc
image of B,. The kernel of this homomorphism is the
group I, of all braids having the identity permutation [I].

The generators of I, are the elements A;,, where Ain‘duPLﬂikq

-

for i<k and A;=Ay;, Thus the number of generators of 4w

15 m(»=) . The defining relations for I“[Q] are all commu-
2
tativity relations. In the case of By, we see that

Anhyhy=dly which commutes with all elements of B, and

therefore, in particular, with all elements of L.

The pair of relations Ayhphy v Ap and Ayl Ay ™ Aw turn out
to be a comslete set of defining relations for L. A
conseguence of this is that any two of the three generatorsv
of I, generate a free group. The defining relations

for I, in general fall into three classes. The first of
these three classes of relstions is the natural gener-
alization of the defining relations for I3 ; namely, if
i<j<k, then Aafyf;awill commute with each of the three
generators Aik,AL;, and Aja. The second class of relations
are consequence of the relation ¢o~; < o, for |\i-k\»2;
namely, if i, j, k, and 1 are distinct and the pairs

(i,j) and (k, 1) do not separate each other, then
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A= Muse- There is a third elass of relations
whick is related to the ¢enter of Bg in the same way
that the first class was related to the center of B;;
namely, if i<j<k<l, then AiLA.iA,AAlALl.Am,Aii will
| comnute with each of the six elements &, , Aik, Aie,Aja,
. L4y, and Agyg. These three classes of relations form
a complete set of defining relations for Ia.

Of eourse, the symmetrie group 2, contains
other subgroups besides the ldentity, and %o each
of these there ceorresponds a subgroup of B... For
example, we may consider those permutations of n
objeets in whieh the first r of them are permuted
arbitrarily and the remaining o®jeects stay fixed.

To this subgroup of Z,.\ would ecorregpond the subgroup
of Ba genersated by the generators of I. and those

, of Bp.

E | The set of elements of elements A;y4 where

}. 1 remains fixed and k ranges through the integers
1,...,n (execept k=i, which is exeluded) generate

| a free group C;m such that B./C; EB..{4). Another

| subgroup of B, which is known to be free is the
group S. generated by the elements (d,,:)= (Gay = )'Wq,

for i running from 1 to n-1. The group BY £5, is

isomorphic to the group of mapping classes of a

sphere with n points missing[5].




There is still another way in which B, is
connected with free groups; namely, B, may be considered
a group of automorphisms of a free group F., with
free generators g, ,ec.s8me 1O «i there corresponds
the following substitution:

gi 8

g“‘_’g;." g" g‘*l
gi_,gé for j#i, i+l

Similarly, to e there corresponds the following
substitution:

8i 8 8in &S

En &,

8; = & for j#i, itl
An automorphism of F. corresponds to an element of
B, if and only if it leaves the element g, g,««-&8~
invarisnt and replaces each of the elements g,,¢¢0,8.
by a transform of one of these elements [1]. Of
eourse, an element of I. will replace each of the
g; By a transform of that same element.

One way of adding relations to Ba is by adding
relations to F,. For example, if Fm is abelianized,
then we have o349} and therefore we get 2..\ from B,
by adding the relation that the g; commute. If,
instead of making the g; commute, we merely make
the commutators belong to the center, then we get
the relation (f}dﬁ'=l. There is a still weaker relation
that we can add to F,; namely, instead of making the

commutators belong to the center, we may merely make them

e

— 1



commute with eaeh other and thus obtain F/EN .
By making the commutators of F. commute, we obtain
a homomorphie image of B,, which we may call B:.

We do not know whether or not B. is isomorphic to B..

Burau's representation and its properties

To each generator «; of B,, Burau [3) assigns

the nXn matrix ~ ;

ﬁﬁ(r;')= 1 ] A‘,.‘,'

[ It is easy to verify that the following relations are

satisfied:
M (EU" (Fen YU (3) 2 Mo U T(03) U (i)
M ()M ()M ()M ()  for |I-k|r2

Thus the group M™ generated by M™( )y ene, M ()

e e p——

is a homomorphic image of B,, and, if B, and b, are
any two elements of B,, we may define M“(b,bl)=MM(b,)M%b).

Buray has also shown [3) that for any matrix in MV,

the elements m;s of this matrix satisfy the following

two relations:

m‘:"fo . .+m1,\=l
Myp+ Xy +eeatx ™' m, ;ax5

These two properties make it possible for Burau'!s

representation to pe reduced. For we can consider
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the matrix with elements m;, as defining a linear transfooma-

tion of the n-dimensional space whose elements are vectors
/

(\,l,..., | ), where the transformation is given bygi"“ilh'”“”u“ﬂm
We see that the vector (1,1,...1) is always transformed into
itselfjalso the hyperplane5;*“§z*"**v1:ﬁs always transformed
into itself. The vector will lie in the hyperplane only if
}#%+ .- +X":q therefore only if x is an nth root of unity
different from 1 itself. In any other case, the vector

will lie outside the hyperplane, and therefore a linear
tpansformation which keeps the hyperplane polntwise fixed

and also keeps the vector fixed must ke the identity transfor-
mation. Therefore the transformations of the hyperplane
which are induced by the transformations corresponding to
matrices in M™ form a group which is isomorphic to M™ ,

unless x is an nth root of unity different from 1. To

obtain a matrix representation of the transformations of

this hyperplane, we siuply eliminateh, by the substitution
vag;fﬂ"mfZAS a result, we get a linear transformation of

the (n—l)—dimensional space of vectors (ﬁ&ﬁ“&). The

matrix of this transformation will be of order n-l. Thus we
have

Theorem 1. From any matrix M%) we can obtain a correspond-

ing matrix R”bgof order n-1, such that the group R™ is isomor-

phic to M™ for all values of x except nth roots of unity

different from 1. This result enables us to investigate the

properties of M™ by working with matrices of order n-1. For all

velues of x except the nth roots of unity different from 1,
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we shall obtain exactly the same relations whether we
work with A" or R, If, 9mwwever, we let x be one of
thg:;oots of unity different from 1, we may expect
relations to ke satisfied in R™ which do not hold in M™,
We should, however, in this case, Be interested in

both the relations in M™ and those in R™, sinee the

two sets of relations are obtained from isomorphiec
groups by means of the same operation; namely, replaecing
the free variable x By a root of unity. The properties
of R™ ;j,, this ecase are also interesting, since in

this case, and in no other, R™ can be semi-reduced.

The reason for this is not diffieult to see. If

we caleulate the matrices of R eorresponding to

Ty and d,y,we obtain

-
e
- ,x'—. R 4

g
R"(#)= ‘.. 0 |R “(41m)= T ” --O--x )Rﬂ(‘?}MM (434)
0 o 0.', for 1=28,¢.451,
1 0

Henee it is clear that no linear relation among the
elements of a column, such as the one already observed
in M™, can exist in R™ As for the rows, it is
apparent that the only such relation possiwle is the
same one that exists in M*™; namely, that the sum
of the elements in any row is 1. This relation will

be satisfied By the first row of R"(<), however,




only if x 1s one of the n-th roots of unity different
o~

from 1. If x is a primitivejroot of unity, where min,

we can obtain from a matrix R*(u) a matrix t.R"(u) T:,

where
\

0 . ‘lli\ ; l- : Ty
In the matrix resulting from this transformation,
the first column will consisi entirely of zeros
except for the element is the first row, which will

be 1. Hence we have

Theorem 2. The matrices R™ can be semi-reduced

1f x is one of the n-th roots of unity, end this is

the only reduction possibles,

We shall denote by R, the group of matrices
obtained from R™ by substituting for x a primitive
m-th root of unity, and by T;;the group of matrices
obtained by crossing out the first row and the first

column from t.Ret.. Many interesting results may

be obtained by letting m assume various values, but

we wish to postpone consideration of such results

to a later discussion. At present we shall 1imit

our sttention to a special case by means of which

we may establish th

of By; namely, that of putting x=-1 1n Rl. The two

generators then become a pailr of generators of the

modular group, for which a complete set of relations

e faithfulness of Burau's representation
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is known [b]. This set of relations consists of

the relations defining By together with the additional
relation (‘]’1)%=l. Since Gﬂ’if commutes with

21l elements;of B , the only elements of B, which are
not 1 which will become 1 when the relation (’-’1)6=1
is added are the positive and negative powers of (Vi'i)‘,
which will be represented in M’ by matrices whose
determinants are the corresponding powars of x°.
Sinee none of these matrices is the unit matrix,
there can be no relations satisfied in M’ which are
not sotisfied in By . Therefore we have

Theorem 3, M’ is a faithful papresentation

of By..

A derivation of Burau's representation and its generalization

We have already considered Bm as a group of
automorphisms of a free group F,.. We now wish to
consider Ba as acting, not on Fm, but on F./Fal.

We assign to each of the g; a &%2 matrix, containing

indeterminates x; and a; as follows:

(X a;)
&0 1

This 1s a faithful representation of E./El. 7,8

Now let us consider the effect of the automorphisms of
B., on these matrices. First we replace each of the
eby its inverse. (It is clear, from the nature

of the defining relations of B., that replacing each



of the o7 by its inverse produces an automorphism

of B..) Therefore, we let the following automorphism

corresvond to @i ¢
& 8 8y &
Eierm 82
g§—+g% for j#i,isl.

In terms of our matrices, we have the following :

X‘- oy
=
1 0 1 )
(XEH R x5 aa‘.\;
=9 |
0 1 0 1)
a

K . {x 5
r 9 -9{ v a7§ for jei,itl.
0o 1 0 1/

We observe that the second row never changes. The

transformations:
(xlﬂ (1-x0) 8 43 a;,.‘)

first element in the first row is always one of the
Xy; indeed, the x: are permuted by any braid according
to the permutation which corresponds naturally to

that braid. It is the second element in the first
row, however, that deserves the most attention.

We observe that this element is a linear combination
of the a; where the coefficients are expressions.

lavolving the xi. Thus, to each of the o;, and, more
generally, to each of the elements of B,, there

corresponds a linear transformation of the a;.
The matrix of the linear transformation corresponding
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to the o, 1is as follows:

\ 0

\ .

i,
0

If we dropped the subscripts, what we would have would

vt

be precisely Burau's representation. Thus we appear,

not only to have derived Burau's representation, but

also to have obtained a generalization of Burau's represen-
tation, which has a better chance of being faithful than
does Burau's original representation. However, if we

test our generalized matrices, we find that the relation
0, Oty 05 2 O340 Oy Tap 18 satisfied only if X,2X, 3...2X % X.
Therefore we see that we cannot hope to represent B. by a
generalization of Burau's representation. However, our
derivation gives us some insight into the structure of
Burau's representation. We see that Burau's representation

is a representation of a group of automorphisms of the

- Y
o 1

Q™ is the group obtained from Fa by adding the relation

group Q™ generated by the matrices

that any two words in the g:; such that the sum of the
exponents in each of them is zero commute with each other.f?ﬁﬂ
This relation can also be expressed in the somewhat simpler
form that, for any i,j, and k, @;g;gk=g~g;g;.

Every automorphism in this group will

e e —
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replace each of the & by a linear combination of the

a;, and will leave the other three elements of the
matrix unchanged. Therefore the automorphism of oy
produced by an element of Ba 18 completely determined
by Burau's representation of that element, and thus

we have

TP

Theoremn 4. Burau's representation of Ba is a

faithful representation ol B. acting on Q.

e see that this is the best result we can
obtain if we wish to represent the whole group Ba..
However, there 1s a possibility that we may obtain
5 still better result if we work only with I. since,
although the defining relations for Bm 1mply those of

i the converse may not be true. Indeed, we find

m2

that the matrices in XyyeessXam corresponding to Inm

satisfy all the defining relations for 1I,. Frurthermore,
we observe that an automorphl sm corresponding to an
element of I, replaces cach of the a;, in the matrices
representing the generators of F. AE!, by a linear
combination of the ai, snd leaves each of the other
three elements of the matrix unchanged. In particular,
each of the X appearing in the Wpper left-hand

corner of the matrix reappears there as @ result of
the sutomorphism, since the elements of I. a@ll have
the identity permutation. Therefore the generalized

Burau matrix representing an olement of Ia determines




completely the automorphism of E./F! produced by that
element. Hence we have

Theorem 5. The generalized Burau matrices, involv-

ing the n _variables Xis sees Xm instead of the single vari-

able x, corresponding to the elements of Ta, form a

faithful representation of o,

Some free subgroups of B,

We recall that there were several free groups CON-
tained in In. Therefore, if we could prove that Burau's
representation was faithful, we could establish that sev-
eral different groups of matrices of order n or n-1 involv-
ing a single variable x are free. If we could prove that
our generalization of Burau's representation is fait! hful,
we would, similarly, have gseveral free groups of matrices
of order n involving n variables. We should like to estab-
lish that, in the case of the generalized Burau representa-
tion, the converse of this statement is also true. This
would mean that the statement that the generalized Burau's
representation is free is equivalent with the statement
that a certain group of matrices is free. In order to do
this, we must make use of the fact that there is & certain
value of n for which our representation of In has been
proved faithful. For n=1 or 2, this faithfulness is
trivial; we have also proved it for n=3. We know that the
generalized Burau's representation of I.a can be

gotten by adding the relation that commutators commute
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14 |

| to F., . Now, we may add to

i o still another relation; namely, g,=1. If we

let I,,, act on this group, what we get 1s simply I &

f Now, if a braid was represented by the identity matrix
beforethe new eelation was added to the free group, it

will certainly be represented by the identity after

————

the relation is added, since putting a generator equal
to 1 will not mzke a commutator cease to be a commutator.

But since we know that our representation of I,, is faith-

e

ful, we know that, if the braid we started with was not
the identity, its being represented by the jdentity matrix
in our representation of I i3 due entirely to the

! new relation g,=1. Therefore our braid must be one

which would become the identity if we added to Fael

the relation g,21. But such a brald must be an

element of the free group generated by fa,hiyeee,Ans-
Similarly, if instead of letting g,=1, we had let gg=1,
we would have proved hat this braid must be an element

of the free group generated by Ayg,«.., AmA; Therefore

|
!
we have il
Theorem 6. Let b be a braid Which gives the identity E!
[

matrix in he generalized Burau's representation, !
i

and let k run throuch the values 1, 2, «o2s7. Then 1f

for each of these values of k the free group generated

by Avs, ..., Aegmust contain b.

This theorem states that the braid b must be an



IT—

~]15~

element of n different free grouns, all of which are r
nornal divisors of B,. Similarly , by assigning special |
values to x, we obtain other normal divisors of Ba
which must contain b. It copears at first sight that
if we know several such subgroups containing b, it
ought to be possible to prove that the only elehent
common to all these subgroups is the identity, and
thus to prove faithfulness for the generalized Burau
representation, or possibly even for the original
Burau representation. In the case, however,
where these subgroups are normal divisors, as they are
in every case that we have, unless we have an infinite
number of such normal divisors, there will always be
elenents different from the identity which belong to
all of them. To obtain such elements, we observe
that if we have a normal divisor contalining an element
b, and another normal divisor containing b, , the
element a,=2b, b b;' by will belong to both normal
divisors, and unless the two normal divisors are such
that any element of one commutes with any elements of
the other, we can always find an &, different from
the identity. OSimilarly, if we have n normal divisors,
from which we choose representatives byy.e.s bay we may

o)

| i ] [ a
define recursively a,= B,, @i= 8&i~x DI i b; , and so

obtain an element a, which beongs to all our normal

divisors. In the case of our free groups, if we take

them consecutively, we certainly do not get the identity.
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In the particular case n=4, we have found four
free groups which must contain any element for which
the generalized Buréu representaticn gives the identity
matrix. In this case, however, it turns out that
such & braid must alse be contained in the free group
Sy. In faect, it must be contained in that subgroup
of My which is generated by (o ’1)° and its transforms,
To prove this statement, we must put x=-1. (The theorem
we are proving now, unlike the previous theorem,
applies to the orilginal Burau representation as well
as to its generalization.) It is clear that if a
braid will vanish if we put (e ey)%=1, the matrix
representing that braid will become the identity. We must
now establish the converse of this theorem. In doing
so, it will be more convenient to work with the reduced
representation than with the original Burau representation.
In doing so, however, we should be aware of the fact that
we may be adding relations to our group by thls reduction,
since (-1)"=1. In fact, we do add the additional
relation (v «.m )=1, as can easily be verified.
But, since (ruf;'3)*generates the center of B,, this
is a rather harmless relation. It is easily seen
that if we put x=-1 in the original Burau representation,

(’nfz‘§Y"3l for any integer n30. It follows that
if putting x=:-1 in the reduced Burau representation

. - ¢
adds only the two relations (e w) =1 and (= z'ﬁi 1?
i & epresentation
then putting x=-1 in the original Burau f-p e
will add only the single relation (fn’i) =1.
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our proof is complete if we can show that the only
relations added to B, by putting x=-1 in the reduced
Burau representation are (rnfi)ﬁl and (o, )= 1.
First, let us apply to the generators of our group RZ
that transformation by which T% is obtained. We get
1 0 1 l1-1 0 1 0 0
“=]o 1-1| 2?0 1 0o %0 1 -1
0O 0 1 0O 1 1 0 0 1)
We observe that the matrices representing r.land
ydiffer only in the element in the upper right-hand
corner. In fact, Tt is generated by ¢, and ¢ and is
isomorphic to Ml. (Incidentally, an analogous relation
exists in B, itself without the relation (Fﬁ’l)‘°l;
namely, if we add to By the relation « =, we get a
group isomorphic to B;, as is easily seen by examining
the defining relations for B4 and B;. Thus we see that
B; is contained in B, not only as a subgroup, but also
as a quotient group. For nmv4, no such qeotient group
exists. This is due basically to the fact that the
commutativity relation between the eiis no longer
transitive.) We also observe that in RY the elements
T, = ffoj and T.® fxﬂ@fcf generate a free abelian normal
divisor. The group R4 is generated by «, *, T,, andT,.
The word problem has been solved for the group generated

by o and g, [1;2); it is srivial «for the group igenerated

by T and T,. If we have a set of relations by means f
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of which we can express any element of R'; as a worhH
in & and & followed by a word in T, and T,, we can
express any element of R: in a unique form. Therefore
a complete set of defining relations for R: consists
of the defining relations for the group generated by

0, and 0, ( including the relation ( o, 0, ). I))'

the relation T« T, which is the only defining

relation for the group generated by 7V, and T,, and the
four relations which will express 0,7, o,", o.My a,”,

a, T,o' , and 07,7, 07 as elements of the abelian

group generated by T, and T; We wish to show that

these relations are all consegences of the defining
relations for B, and the two additional relations (e, o;)°=l
and ( o, o, o7, Y=1. 1In fact, we get the following
transformation formulas, which are consegences of the

defin'ggrelations for B :

A 7= T,
’: rl i:v;-", LT’&
L “{ .r»“' - T:,—Tn.l
1 Tz_ l"l - T'; r‘-l,\\,‘

Finally, from the relation 7, v+~ T, we get o ,
07, 07,053 055:( 0 0y ». But (o-yoq ¥=1 is a con-
sequence of ( o-, 0% )"—l, therefore our relation becomes
o oy o' o (epey )'=1. But o 03 07 03 o7, (o7, 03 )
(0'", 0 o3 )It . This completes the proof ofi' - _ . e

LS (0 L I A AR T
s:heorem 7. THe group-®&« is-isomorphic¢ to the growuo

Obtuined from DBs
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by adding the two relations ( 6=, 05 )% =1 and (Lo, 6s 6 ).

The group M:, is isomorphic to the groun obtained from

By by adding the single relation ( 07, 0« )'=1. The normal

gévisor of By generated by ( o, G}IY and its transforms,

which 1s a free group with an infinite number of free

generators and is contained in S., must contain any

element of By for which Burau's representation gives

the identity matrix.

In the proof of Thecorem 7, we observed that the
formulas expressing the transforms of T, and WL'by
o~, and o=, as elements of the group generated by
T and T depended only gpon the defining relations
for Bw. Therefore & and T, are the generators of
the normal divisor of B, consisting of all elements
which would become 1 if we put 0=, 2063 ,; VWhen we found
that, s &:;andTg generate a free abelian group,
however, we made essential use of the relations(onrif:;ahd
(o=, o 07y ) =1. We should now like to find what
relations are satisfied by 7, and T, in By, without
these additional relations. We wish to show that the
commutator subgroup of the group generated by T, and
T, is contained in Sy. In the first place, the permu-
tations corresponding to Y, and T, commute, and
therefore all our commutators will have the identity

- Y - ] . (3 17 a’ S
permutation. Now, S can be defined geometrlca}lv
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the group of braids with identity permutation that

can be produced if the ends of the four strings are
attached to a sphere, by merely rotating the sphere
successively about various axes perpendicular to the
direction of the strings of the braid and letting the
sphere pass between the strings [5]. It is clear
geometrically, if we draw the braids 7, and Ty

that each of these elements can be produced by such a
rotation, although it doegrgive the identity permutation
If, however, we consider an element generated by T,

and 7, and belonging to the commuta€;¥??or, indeed,

any element generated by 7. and T, having identity
permutation), it will satisfy all the conditions
regired for an element to belong to S¢. ©Since Sy

is a free group, and any subgroup of a free group is
free, it follows that the commutator subgroup of the
group generated by T, and M is free. Thus any element
of the group generated by 7T, and Y, can be expressed

m~ ~ .
't ¢, where ¢ is an element

uniquely in the form T, 5
ofthe commutator group which is determined by the
given element. But this means that 7~ and 7, generate
a free group. Unlike all other free groups that we
have found contained in braid groups, this one has
generators whose permutations are not identity. We

have obtained a new solution to the word problem in



l s

f By, Since any element in B, can be expressed uniguely

as a product of an element of By and an element of the

free group generated by 7 and T. . Also, we are now
able to represent elements of B, by automcrphisms

of a free group having only two free generators,
instead of one having three generators, as originally

defined.

Theorem B. The subgroup of B« generated by

T and Tiis free, and the elements of B:; may be represen-

ted ags automorphisms of this free group as follows:

o T, T

]
p -{
Yo T
U;.: Ar) - (T'L

Tz = T, Prl‘l KT?-

We observe that the element =T, TN

is invariant under these automerphisms. This is reflected
in the fact that ( e o ), which replaces o, and o7

by c,"r.cv and <. o ¢e respectively, commutes with all ‘
elements of our group of automorphisms. Therefore, if

we abelianize the free group on which our automorphisms

act, we add the relation (o=, 07 Y 2 1 to our group

of automorphisms.

then we may write ourtransformations additively as

But if we abelianize the free group, I
[
follows: l




0": /T?. s ";_’T|
TeoT
oy 'Tl' -] L’Tz- T.
']
T

We observe that the matrices of these linear trans-
formations are precisely those defined by Ri , and
therefore that if we let 7, and T, commute, o~, and o,
generate a group isomorphic to Ri whose defining
reletions are o7 &y o=z o o o and (o~ o, )*=1.

In order to establish by an argument similar to that
of Theorem 3 that if T, and T, become free generators,
¢~, and 97, generate a group isomorphic to B,, it is
only necessary to show that if T,and T, are free
generators, (Oj 0™ )6 is an element of infinite
order. But clearly transforming by < is an operation
of infinite order. Therefore we have

Theorem 9., B; is isomorphic to a group of

autonmorphisms of a free group with two free renerators

- and 7Y.. The penerators of this group of automor-

phisms are
N T'
- _ " =l
: |z") Tz ?I
[ i ‘T' --’ ’Tl

JT,_'-—’ Tg Tl“ r’.




Extension of hhe generalized Burau representation

We have already seen the original Burau represen-
tation of Bm acting on a group in which elements in which
the sum of the exponents of the generators is zero commute,
and we have also seen the generalized Bursau repreééhtéfioﬁ

which represents faithfully a groun of automorvphisms of
the group obtained by adding to a free group the relation
that commutators commute, but which applies not to Bm but
only to I,. We should like to combine the advantages of
these two representatioas, by obtaining a representation
of the whole group B, which faithfully represents Bam
acting on the group obtained from the free groun by making‘
commutators commute. It twrns out that this can indeed be
done, although at the expense of increaéing the rank of
the representation from a to n-.n!

Thus, for example, i1f the generalized Burau
representation of I, by 4x4 m;trices is faithful,

then whether Burau's original representation of B,

is faithful or not, we can construct a group of 96x96

matrices which we can easily prove is faithful. These
can, in fact, be considered 24x24 matrices whose
elements are not numbers but elements of I4. If we
set all elements of Iy equal to the identity in our
matrices, we obtzin a representation of the group ;
Obteined from By by putting the elements of Iy egual

to the identity. But this is simply the symmetric

group &,, of order 24. DBut we do not even have to



deal with 24%24 matrices, for we can carry out the
extension process in several steps. We recall that
there is a subgroup of By corresponding to every
subgroup of 2«- (or, more generally, there 1is a
subgroup of Ba corresponding to every subgroup of Z;w)
Thus, if we have a representation of I, , we can extend
it first to a representation of the group generated

by o, and the generators of I.. This will increase
the rank of our representation from n to 2n, but the
new matrices may be considered to be 2x2 matrices

whose elements are elements of I.. If we have a represen-
tation of the groun generated by the generators of In
and those of B., we can obtain a representation of

the group generated by the generators of I, and those
of Bos - In doing so, we increase the rank from

pem! to n, (m+l)}, bubithemew matrices may becconsidered
to be (mtl)x(m+l). Akatrices whose elements are elements
of the group generated by the generators of I, and

those of Bm. Thus, given a representation of I,

we can proceed recursively to build up a representation
of B, without, at any particular stage of the process,
having to deal with matrices of degree’n. The set

of defining relations for the resulting representation
will consist of the defining relations for B, and the
defining relations for the given representation of 0.
In order to make this possible, what we need is a

Method for finding a faithful representation of a
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group, containing a subgroup of finite index by means
of matrices of degree equal to that index whose elements |
are elements of the subgroup. But such a method is
provided by the following procedure [ 9]. First,
we choose a representative of each of the right cosets
of our subgroup. In order to find a matrix representing
a given generator of our group, we must-first find the
corresponding permutation matrix. If we multiply
each of our representatives on the right by a particular
generator, a new set of elements will be produced, no
two of which will belong to the same coset. Thus
we obtain a new set of representatives of the cosets,
but, in general, in a different order unless the gnerator
with which we started was already an element of
our subgroun. There will be some permutation of the
cosets thus obtained which will produce the original
cosets. Thus to every generator of our group, there
corresponds a permutation matrix, Which is the identity
if our generator is an element of the subgroup. To
obtain a fzithful representation of our group, we
simply replace each 1 in our permutation matrix by a
properly chosen element of the subgroup. To obtain
such an element, we again multiply each representative

on the right by our generator. We ob®in a represen-

tative of some coset, which may or may not be the




96

same as the representatile of that coset which we have
chosen. In any case, we multiply our result on the
right by the inverse of the representative of that
coset which we have chosen. Thus, we may get the
ldentity if the two representatives turn out to be
the same; otherwise we obtain some other element of
our subgroup. By means of thigs process, we obtain
a faithful representation of our group [9]. Applying
this procedure to our braid group, either directly,
using I, as the subgroup and B. as the whole group,
or recursively in the manner that we have indicated,
we obtain

Theorem 10 Given a faithful representation of I..

acting on a eertzin group, we can derive from it a

faithful representation of B. acting on that group.

In particular, we can obtain a faithful revresentation

of B.. acting on F./F. .

We may illustrate the process just discussed
by finding a faithful representation of B; , given a
Taithful representation of I; . As representatives
we use 1, o0, , 00, , 0~ t 9 20, 0, , and 0, o, o, .
As generators of B, we use o, and ¢, . (We
also might use Artin's two generators o, and d,.
In the case of By there is no advantage in doing this,

but for n>3, we may, by using Artin's pair of generators,
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reduce the number of generators for which we must
find representations from n-1 to 2.) By following

the procedure we have just outlined, we obtain

o 1 o o o 6\ /b o 1 o o 6]
QU

o) 0 e} o) s} e} o} o} 1 o o}

o o o o o & c o,0i6G 0 o o o

o) o} o) o} o) 1

3
~=[(0 © o o 1 o0 o~ Z o o o o o
co a0 o o o

\p o 0 o o of © o o o gt

It is easily verified that these matrices satisfythe

relation o—, o0~

., 0= 0, 07, 07, . Furthermore if we

interpret the braids that appear as elements of these

matrices to be the matrices corresponding to those

braids in the generalized Burau representation, we

know, in this case, tht we have a faithful representation
of By, since even the original Burau representation of By
is faithful. Thus the more elaborate representation

of B3 that we have obtained is no improvement over
Burau's original representation. But it is possible

to obtain a representation of B, for n»3 exactly the
Same method that we have just used to obtain a represen-
tation of B;. In this case, we know neither, on the

one hand, whether our more elaborate representation is
any improvement over Burau's original representation,
lor, on the other hand, whether the improvements,

if any, which we have made are sufficient to make

the resulting group of matrices a faithful represen-

tation of B,-
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A consideration of sveeial values of X.

We have devoted much attention to Burau's represen-

tation, its properties, and its generallzations.

But we may also consider what happens to Burau's
representation if we substitute particular values for Xx.
The resulting groups of matrices will be homomorphic
images of M,. We may also condider what happens to

our 2X2 matrices representing the free group on which
B. acts, if we substitute particular values Sor the x's.
The resulting group will, in general, no longer be

free, and its automotphisms will form a group which

is a homomorphic image of B, and which can be represen-
ted by Burau's matrices if we substitute for x the

same value which we substituted into the 2x2 matrices
representing our free group. As fer possible values

of x, the only one that we cennot use is 0, since

then our matrices would become degenerate. If we

put x=1, our free group becomes abelian, and our

braid group becomes the symmetric group K. . If we

let x be a complex number, we should choose @ root of
unity if we wish to add as meny relations as possible
to our groups, since otherwise a word will be equal to 1
only if the sum of the exponents of the generators

in that word is zero. As before, we shall indicate
that we have substituted a primitive nth root of unity

for x by attaching the subscript m to the symbol in
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s SR " '+ question; thus, we may speak of M. ,R7,

T s OF Q. #lso, we note that x does not necessarily
have to be a complex number; it eduld, for exaumple,

be any non-singular matrix. We may attempt either,

to find all the relations which are satisfied if we

give X a particular value or to determine all values f

x for which a particuler relation is satisfied.

The first of these two problems, of course, is the

more significant, but the second is easier to solve,
since it amounts merely to solving a system of simul-
teneous equations in a single unknown. #e may, for
instance, wish to find those roots of unity for which
certain elements of our group are of finite order.
Naturally, we should wish to know the order of o-, , for
this will also be egrl to the order of all the o7; .
Another element whose order we should like to know

is o=, 07, . This will also give us the order of all
elements of the form o=, 0 ;. Or 0 ; Oz .

In particular, we are especially interested in the

order of (6=, 0=, )', since this is the center of Bj.
Still another element of special importance is o=, 03,
With the knowledge of the orders of these three elements
0,00, , and o, 07" , we know the order of any word

of length 2 in the 3. But, aside from this the

element oo o6, possesses special properties which
]

make it worthy of consideraticn. In the first place,

-t .
if we gut o7, 0", =1, B becomes a cyclic group.
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Then, ( o, o-l")'z ol ot ot 0. ; Thus, the order
of 0=, o0, tells us something about the order of the
commutator of two generators of I,.Geometrically,

(o=, o y represents a linkage of three circles

in which no two of them are linked. The matrices
representing powers of (Gj og? ) also have a special
property; namely, they are functions of Xed and therefore
are real if x is an imaginary root of unity. All
these considerations seem to Justify our imwginary
selection of o,, oo, o7, , and o-, 03" as the three
elements of B, in whose orders we are most interested.
Since these are all elements of B,,we may determine
their orders by considering thelr representation

in 33m . The results obtained are as follows:

Theorem 1t. The n-th power of B’,. () is 1 if and

A 1= x)™ . .
only if i 2 =0 where x is a primitive m-th root

of unity. R’ﬂ.(dj 0~ ) is of order 3m unless m is

divisible by 3, in which case th(d'lﬁﬁ ) is of

order m. If m:2 or 3.”&%(0~. o—."' ) is of infinite

order. For m=1,4, and 6, the order of Riﬂ(O‘, o ) is

5,6, and 4 respectively.

From the above results it appears that the ‘
values of m for which the most relations are satisfiled
are 1, 4, and 6. For m=1, we dready know that we get

the symmetric group. For m:4 and m=6, it will also
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turn out that Riw is a finite group. In the case of m=4,
the defining relations are
d- 1 O"; G-| < O—l U—‘ O—l

ot 1

(o o ) 21
(6=, o, " )=1
These relations are sufficient to define a group of
order 96, as can be seen by drawing the graph of the
group. To show thst no further defining relations
- are necessary, we might calculate our 296 matrices to
make sure they are all distinct. We may, however,
simplify our procedure somewhat by observing that the
R, ((ov, 0,)*)n is simply -i times the unit matrix.
If we put (c‘. 0 4 )’=l, then Rﬂ becomes isomorphic
to Z;. If we can list 24 matrices which are all

distinct, no two of which can be obtained from each

other by multiplication by i,1, or -i, this will be

suffieient, and we do not have to exhibit 96 matrices.

Our 24 magrices are as follows:
. o /A"; l. - L. =13
R 3" (,"'n)-z ('"’ ") K " CWI ) (_0 !)

e [}

3

¢, e () Leds( )
e (0 )5 )
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R :(f.ﬁ)z(-l-i -;)

\ \

-A ¢

Rl K P )

3 p
RJ‘;I‘{;!‘J: - J'. 1A

el ‘
R"( ]{ -4 ;-J.)

{(m'.’): It 4 A )
+ -

| o { =A

§ el - v f')

| =

3 e o). | A
R,‘('z l)' (i o) /{,
3 X . . !
R u['l"'z)=(° "\)

! o
These matrices are indeed distinct, and no
are such that one can bhe obtained from the
multiplication by i, -1, or -i. Therefore

Theorem 11. B; is a group whose exact ord

two of them
other by
we have

er is 96,

which is generated by o-, and 0. with the

following

defining relations:

o, *=1
i
(0= o=y )=l

N
(o, o7, ) =1

N



Each of the above 24 matrices reopresents a coset

of By. We have assigned to each matrix a particular
element of B,, but, of course, we could have done this

in many ways. We have chosen a particuler set of represen-
tatives which will satisfy a Schreier condition, in order
that we may use the Reidemeister-Schreier method to find

a complete set of defining relations for the group of
elements which become 1 when we add to Bs the relations
defining R’ and the additional relation (o=, o3 V= 1.

Upon application of the Reidemeister-Schreier method, we
obtein

Theorem 18. The subgroup of By which becomes 1 if we add

the relations definine R and the additional relstion

3 ] , i \
(o= 0~ ) =1 is generated by the following six elcments:

O—'l','ﬁ":'* ,(0—. oy )3 ,(U‘L"O“| )i ,(0_1 oo, )L , and (D:. (O )’ o

The first five of these generate a free groun, and the

sixth belongs to the center.

The significance of this theorem is that it tells
us the generators and relations for a group which will
contain any element of 33 for which the corresponding
. matrix is e unit matrix. Incidentalty, 1t was not neces-
sary to add the relation (oj 0“1),=l. By adding this
relation, however, we are able to reduce considerably the
amowmt of labor involved in the Reidemelster-Schreier method,

since we have only 24 cosets to work with instead of 96.
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Turning to By we obtain the following result:

Theorem 13, The group T: consists of 96 matrices

¥ which are identical with those of Ri . _The elements

of Ra which correspond to the ldentity in T: form

| an_abelian group with two generators, each of infinite

u order,
Just as we have been able to obtain such results

by putting m=4, we ought to be able to get egally

good results for m=6, since there, too, o=, o" is
of finite order. The relations given by Theorenm 10 are:
ooy, 0T, 0,: 0, 0", o,
o=l
(v, o )'=1
(o7y om*)"=1

By drawing the graph of this group, we see
that the order of the group is 24, and that (o, o, f:l
is a consequence of the other three relations. This
group, however, cannot be isomorphic to Ei@, since
00, ¢, 1is of order @ while the order of an element

of <£; must be either %y %, or 4. Thus we have

3 . ; .
Theorem 14, R} 15 a group of arder 24, not isomorohic

"-6-9..__12_}__ Iig senerstors Ars o and o~ . and the

;
de?f—""“?.‘;‘lg eolotione apas

O_I ONL O—, = O-Z 6_' O‘l

-y “
(o, 67,7 )=1
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Let us see what o' : 1 means in terms of F,.
The automorphism corresponding to ¢=,’ is
g8 g.8.8.8" e g,
8, = g 8.8,8; 8
Thus, if we add to B.. the relation o=, = 1,
we are adding to F. the relation g, g g,:8,8, 8, -
Thus we have exactly the same relation among the g's that
we hzve among the o~ 's in B;, although the relation
(o=, 07, ')"'=1 will impose an additional rather
complicated relation on the g's. Thus, in R: , We

have, in a sense, a braid group acting on a braid group.
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SUMMARY

We have constructed and investigated the
properties of several matrix representztions of
breid groups, and characterized these representatiouns
in terms of grouo theory. Some interesting results
have been obtained from Burau's representation M
by putting the parameter x equal to various roots
of unity. We have attempted, uasuccessfully, to
decide whether M Tis a faithful representation of B..
We have, however, been able to find a generalized
Burau representation which lies between B, and ",
so that now we have

B . > generalized Burau representation — M
We do not know whether either of these two homomorphisms

is an isomorphism. . '
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