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Abstract

The Milnor’s invariants of a pure braid’s closure provide information
on how complex the braid is (specifically, how difficult it is to pull apart
or untangle). Murasugi previously showed that all 3-braids are conjugate
to a 3-braid of one of three forms. Since any two braids that are conju-
gate have the same Milnor’s invariants, we can completely describe the
Milnor’s invariants of pure braids on 3 strands by considering the Milnor’s
invariants of braids in the three classes outlined by Murasugi. This paper
explores two key questions: when are 3-braids in these three classes pure,
and what do their closures’ Milnor’s invariants look like?

1 Introduction

Informally, one could think of an n-braid as an intertwining of n disjoint strands.
A braid can be thought of as a parametrization of n points being pushed around
on a a disk, with the strands representing permutations of the points over time.
Thus, no strand on a braid loops back on itself; all strands continually move
downward. Since we can think of a braid as a subset of the product of the unit
interval and a disk, a pure braid on n strands (n-braid) is a braid whose strands
start and end in the same position on this disk. Formally, a pure braid is defined
as follows.

Definition 1. Let D be the unit disk, I the unit interval, and {p1,p2,...,Dr}
be n points in the interior of D. An n-component pure braid is a smooth, proper
embedding o : | |,, I — D x I such that

) = {pi} x {0}
0|1i(1) = {pi} x {1}
L) = {Gi} x {z}

g

g

where g; € D.

The set of all braids on n strands forms a group under the operation of
stacking, as does the set of all pure braids, denoted PB,,. Then, we can consider
elements of this group to be conjugate.



Definition 2. Two n-braids 3, are conjugate if, for some n-braid o, 3’ =
afBa~l.

Murasugi [Mur74] states that all 3-braids are conjugate to one of the follow-
ing classes of braids.

1. hloyo, " ...o105 “" with a; > 0 and some a; > 0
2. hdogn with m € Z

3. hlooy ! with m € {1,2,3}

where h = (0102)?

We can take the closure of a pure braid, and this closure is a link. As it
turns out, if two braids are conjugate, their closures will be the same link. This
can be visualized as follows, where the second link can be deformed into the
first.

In other words, we can completely describe the Milnor’s invariants of pure braids
on 3 strands by describing the Milnor’s invariants of the three forms of braids
Murasugi defined.

Milnor’s invariants are a concordance invariant for links that provide mean-
ingful information about how components are linked. Milnor’s invariants can be
thought of as higher-order versions of linking number (that is, the integer-valued
linking numbers are the first Milnor’s invariants one can take, and when these
are insufficient, there are Milnor’s invariants of higher weight). In this paper, we
use surface systems to compute Milnor’s invariants, which we’ll briefly outline
before presenting any computations.

Applying a link concordance invariant to closures of pure braids can help
us in understanding when a link is concordant to a closure of a pure braid;
if a three-component link has Milnor’s invariants that are not possible for the
closure of a pure braid, this obstructs the link from being concordant to the
closure of a pure braid. We won’t discuss concordance much in this paper, but
it’s an important equivalence relation used to describe knots and links.



2 When are 3-braids pure?

Pure braids are interesting objects of study. Since we want to know what the
Milnor’s invariants of pure braids on 3 strands look like, we first need to identify
when a braid in one of the three classes outlined by Murasugi is pure.

2.1 First class

To better understand braids of the form héoi0; ' ...0105 “, we can consider the
permutations these braids represent. That is, we can construct a homomorphism
¢ : B3 — S3 and work with permutations in S3 instead of 3—braids. Then, a
braid 8 in Bs is pure if and only if ¢(3) = eg,. This is the main proof strategy
in this section; it can also be used elsewhere, but is most necessary here since
this class of braids is the largest and most complicated.

Proposition 1. Let 8 be a braid of the form hioi05 " ...0105 %" with a; > 0
and some a; > 0 where ay,as, ..., a, are all odd. Then, B is pure if and only if
n is diwisible by 3.

Proof. Since h is pure, h? is pure for any integer d since the composition of two
pure braids is also pure. Thus, we will only need to consider the portions of a
braid below h?.

Let a; be odd. Then, the section o105 “* of § maps to the following permu-
tation in Sj3.

It follows that o105 “*...0105 “* maps to this permutation to the nth power
in S3. That is,

Cay Ca, 1 2 3\"
0109 ...0109 — 3 1 92

Taking n = 1,2, 3, we see that this is a cycle of length 3.
12 3\' /123
31 2/ \3 1 2
12 3\* /(123
3 2] \2 1
12 3\° /123
31 2/ \1 3

Then, for a braid 8 with a1, as, ..., a, all odd integers, § will map to one of
the three permutations above depending on n.
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If n = 0(mod3), then
If n = 1(mod3), then

And, if n = 2(mod3), then

(329

Thus, for a braid 8 of the form hloio; ' ...0105 ** with a; > 0 and some
a; > 0, if ay,aq,...,a, are all odd and n is divisible by 3 then f is pure. If
a1,as, ..., a, are all odd and n is not divisible by 3 then § is not pure. O

Proposition 2. Let B be a braid of the form hioi0, % ...o105 *" with a; > 0
and some a; > 0 where a1, as, ..., a, are all even. Then, 3 is pure if and only if
n s divisible by 2.

Proof. Let a1,aq,...,a, be even integers. Then,

_ay Ca, 1 2 3\"
0109 ...0109 — 9 1 3

12 3\" (12 3
2 13/ \21 3
12 3\" (123
2 13/ "\t 2 3

This is a cycle of length 2. It follows that that S is pure if and only if n is
even. 0

Where, for odd n,

and for even n,

By considering braids as elements of S3, we see that the behavior of these
subsets of the first class of braids is determined only by n (the number of
indices ay, ..., a,) and whether these indices are even or odd, though not their
actual numerical value. Then, we can use a similar proof strategy of considering
braids as permutations in Ss then identifying a finite cycle that arises when
constructing braids of a particular form (since every braid will be constructed
by composing the two permutations above some number of times). This provides
us additional results such as:

Lemma 2.1. Let ay,as, ..., a, be integers with alternating parity (that is, let a;
for odd i and a; for even i have opposite parity). Then, 3 is pure if and only if
4 divides n.



Lemma 2.2. Let ag,as,...,a, be integers of the same parity (either even or
odd) and let a1 have opposite parity. Then, B is not pure.

Additionally, we can combine braids of any of these forms (by stacking) any
number of times to arrive at additional pure braids.

Corollary 2.2.1. Let a, 8 be pure braids (for example, braids of one of the
previously mentioned forms) and let a = h%/ and 8 = h%3'. Then, a braid of
the form h%a’ will also be pure.

Proof. This follows naturally from the fact that compositions of pure braids are
also pure. O

As it turns out, it’s not too difficult to find pure braids in this first class
of braids; there are numerous examples. It is, however, difficult to determine
whether braids of the forms listed above are the only pure braids in Murasugi’s
first class of braids or if there exist more (and if so, how many more?).

2.2 Second class

Theorem 2.3. Let 3 be a braid of the form hio* with m € Z. For any d € 7Z,
B is a pure braid if and only if m is even.

Proof. Let 8 be a braid of the form h%c}* with m € Z. Since h is pure, h? will
also be pure for any integer d. Thus, we will only need to consider the portion
of B below h?. That is, we will only consider o%".

Recall that o5 is the generator that permutes the second and third strand.
09 is its own inverse, since permuting the strands a second time returns them
to their original location; this is a cycle of length 2. Then, for an even integer
m, o’ is pure, and for an odd integer m, ¢4* is not pure.

One could also show this using the proof method from the previous section
(constructing a homomorphism to S5 and showing that this finite cycle exists
in Sg) U

2.3 Third class

Lemma 2.4. Let 8 be a braid of the form h¥oo5 ' with m € {1,2,3}. Then,
B is not pure.

Proof. This class of braids is small enough that we can draw all the braids of
this form and verify that none of them are pure.
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3 Milnor’s Invariants

All Milnor’s invariants taken in this paper are computed using surface systems,
which Cochran [Coc90] formally defines as follows. He begins by introducing a
system for indexing the curves generated by this process (n-bracketing), then
defining a surface system for a link L.

Definition 3. The set of n-bracketings (in m variables) B, is given inductively
by:

e By ={z,y,2..} and
e B, ={(o,w)| o€ By,we€ By, 1 <k<n-1}

Definition 4. A surface system of length n for L is a pair (C,V) of sets satis-
fying:

o There exists a coherent subset S of UB; such that if w(o) < n theno € S.

e V is a set of compact, oriented, transversly indersecting, 2-dimensional
(possibly empty) submanifolds V(o) of E(L), bijectively indexed by o € S
such that V(a, B) is V(B, ) with the opposite orientation.

o Cis a set of closed, oriented (possibly empty) 1-dimensional submanifolds
of E(L) containing the longitudes c(x),c(y),c(z),... and all of whose other
elements are bijectively indexed by (B, ) where B, a are in S. Specifically,
C is the set consisting of the longitudes of L together with all ¢(8, )
where ¢(B,a) is V(B) N V(a). By convention, V(a) N V(a) is empty.
These intersections are oriented according to the convention that the or-
dered triple (orientation of ¢(8, a), positive normal to V(53), positive nor-
mal to V(a)) be the chosen orientation of S3. These positive normals
shall be chosen so that the ordered pairs (orientation of the surface, pos-
itive normal) give the ambient orientation. We shall let ¢*(8,a) denote
either a (+,+), (+,-),(-,+), or a (-,-) push-off of ¢(B, ) with respect to



V(B) and V(«) such that the interior of the annulus spanning ¢ and c*
misses all elements of C. Define ¢ (x) to be c(x) and similarly for other
longitudes. Since ¢(B,a) = —c(a, B), it is required that these push-offs
satisfy ¢ (B,a) = —cT (o, B).

e 0V (o) =cT (o).

e Suppose w(a) + w(B) < n; then, c¢(o) NV (B) is empty unless c(o) C
V(B). Thus, c(o)Nec(B) is empty unless the images of the curves coincide.
Furthermore, it is convenient to impose the condition that if w(B) < n
then each component of 6V (B) is the entire boundary of a component of

V(B).

That is, we can label the components of a closure of a braid as ¢(x), ¢(y), and
¢(z). Then, we can denote surfaces bounded by each component V (), V (y), V(z)
(respectively) and the curves resulting from taking intersections of these sur-
faces as c(zy), c(yz),c(xz) etc. This is an iterative process; we can continue
generating surfaces bounded by curves and taking their intersections until we
arrive at a pair of curves with a non-zero linking number. This is called the first
non-vanishing Milnor’s invariant of the link.

Note: For a curve ¢(z), Cochran references its positive push off of the sur-
faces it results from, which he denotes ¢ (x). The surfaces bounded by pure
braids are relatively simple (essentially flat disks), so taking the push off a sur-
face is simply lifting the curve off the page in the positive direction (either
towards or away from the viewer, depending on the choice of orientation for the
surfaces).

4 Milnor’s invariants of pure 3-braids

Armed with some examples of pure 3-braids, we can now describe their Milnor’s
invariants. What do the Milnor’s invariants of these pure braids look like? What
weight must they be?

4.1 First class

Proposition 3. There exists a pure braid of the form hdolaz_al...ma;“" with
a; > 0 and some a; > 0 with first non-vanishing Milnor’s invariants of weight
greater than 2 (linking number is not sufficient for describing first non-vanishing
Milnor’s invariants of this class of braids).



Proof. Consider the braid:

3 1

0102_30102_101 oy

This braid is an element of the first class of braids outlined by Murasugi, as

it can be written hoalaggalaglal080108010802_1.

]
;

We can draw its closure and verify that it is both non-trivial and has vanish-
ing weight two Milnor’s invariants (that is, the linking number between each pair
of components is zero). This makes it a good candidate for a link with higher-
order non-vanishing Milnor’s invariants, so we can orient each component as
follows and generate surfaces bounded by each pair of components.






And we can identify two curves of intersection ¢(zz) (where V(z), V() inter-
sect), shown in red below.

Then, we find that these curves of intersection are linked with the component
¢(y) in a non-trivial way. That is,

i1(123) = lk(c(zz), c(y)) = 2.

We can take the linkings (k(c(zy), c(z)) and Ck(c(yz), c(z)) in a similar fash-
ion, and these will also be equal to 2. Thus, there exists a pure braid of the
form hdalaz_ “...o105 " with a; > 0 and some a; > 0 with first non-vanishing
Milnor’s invariants of weight 3.

0

In fact, since linking number is additive and we can create new braids by
stacking others in this class (i.e., copies of this braid), there are actually multiple
examples of braids of this form with first non-vanishing Milnor’s invariants of
weight 3. Since braids of this form are constructed by stacking various combi-
nations of oy and oy ! it’s entirely possible that weight 3 is the highest possible
weight for the first non-vanishing Milnor’s invariants of a pure braid in this class
of 3-braids.

Conjecture 1. Let 8 be a braid of the form (class one) such that all weight
2 Milnor’s invariants vanish. Then, [ will have first non-vanishing Milnor’s
invariant of weight 3.
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Brunnian braids on 3 strands form a subgroup of the pure braids on 3 strands.
They’re interesting objects of study when trying to find braids in this class with
first non-vanishing Milnor’s invariants of weight greater than 2.

Conjecture 2. Let 8 be a brunnian braid of the form (class one). Then, 3
cannot have first non-vanishing Milnor’s invariants of weight 2. Furthermore,
the first non-vanishing Milnor’s invariants of B will be of weight 3.

4.2 Shorthand for Milnor’s invariants of weight 2

Let 8 be a 3-braid and let B be the closure of 8: a link. Then, denote the first,
second, and third component of 3 (from the first, second, and third strands of
B) x,y, and z. Then, we will define a function L : B3 — Z3 as follows.

L(o) = (bk(z,y), lk(y, 2), bk(z, 2))

We will use this notation in the next proof to describe the linking numbers of
pairs of components in the closure of a 3-braid. This makes it easier to recognize
when all weight 2 Milnor’s invariants of the closure of a braid o vanish, as L(o)
will be (0,0, 0).

4.3 Second class

Theorem 4.1. Let 3 be a braid of the form hicl* with m € Z and let B be the
closure of B. Then, the first non-vanishing Milnor’s invariant of 8 will be of
weight 2.

Proof. We can quickly calculate that
L(h%) = (2d, 2d, 2d)
and
L(c3") = (0,m,0)

Let 3 be a braid of the form h%c}* with m € Z. Since linking number is additive,
we have A

L(B) = (2d,2d 4+ m, 2d)
It follows that L(3) = (0,0,0) if and only if d = 0 and m = 0. Thus, the only
braid S of this form whose closure has no non-zero weight 2 Milnor’s invariants
is the trivial braid on three strands. O
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